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Lawry, M. W. (Ph.D., Aerospace Engineering)

A topology optimization method for structural designs reliant on contact phenomena

Thesis directed by Prof. Kurt Maute

This thesis introduces a comprehensive computational methodology for the topology opti-

mization of contact problems, which is relevant to a broad range of engineering applications. The

proposed methodology is capable of handling geometric and material nonlinearities, unilateral and

bilateral contact behavior, small and large contact surface sliding, various contact constitutive

relations, and the analysis of both two and three dimensional problems. The Level Set Method

(LSM) in combination with the eXtended Finite Element Method (XFEM) is used to provide ge-

ometry control while maintaining precise definition of the interface. Contact constitutive relations

are enforced weakly at the interface using a surface-to-surface integration method. A nonlinear

programming scheme is used to solve the optimization problem, and sensitivities are determined

using the adjoint method. To demonstrate mechanical model accuracy and explore the defining

characteristics of the proposed method, verification and optimization studies were performed on

small strain frictionless contact problems in two dimensions, small strain cohesive problems in

two and three dimensions, and large strain frictionless contact problems in two dimensions. The

proposed method has shown great promise to achieve optimized geometry for a wide variety of

contact behavior. Numerical examples demonstrate that in general, optimal geometry for contact

problems depends heavily on the interface constitutive behavior. Three dimensional studies reveal

design traits that cannot be characterized in two dimensions. Finally, numerical examples with

large sliding contact behavior demonstrate that non-intuitive design solutions can be achieved for

surfaces which experience contact over a broad range of motion. Mechanical model accuracy and

optimization reliability concerns are discussed for a variety of contact behavioral assumptions and

stabilization techniques.
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Chapter 1

Introduction

1.1 Research Overview

Mechanical devices which leverage contact behavior to perform certain tasks are prevalent in

everyday living. From transportation, to energy production, agriculture, manufacturing, medical

devices, electronics, and other essential processes, contact behavior plays an important role. Con-

tact phenomena between multi-component structures can be utilized to re-direct motion, regulate

potential and kinetic energy, control fluid-flow, provide a mechanical advantage, or provide traction.

The emergence of classical contact mechanics is often associated with Heinrich Hertz, who

in 1882 provided a solution for frictionless contact between two curved elastic bodies [41]. Nearly

a century later, surface energy was characterized for material adhesion in [47] and subsequently

refuted by an alternative formulation [27]. Other forms of contact phenomena, such as friction,

lubrication, and wear are well studied aspects of tribology. Frictional contact problems have been

characterized throughout history, notably Da Vinci in the 15th century who deduced that frictional

forces are proportional to the normal pressure exerted, and not the surface area between bodies

(see Dowson, 1979 [29]). Subsequent studies by Coulomb (1785) developed frictional coefficients

for various materials in sliding contact.

Research in the field of contact mechanics grew tremendously with the emergence of the Fi-

nite Element Method and modern computers: notable first forays include [112] and [20] in which

treatments of contact were provided using geometrically linear theory, and [111] which defined a

simple contact method capable of handling large strains. Since then, there is an abundance of lit-
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erature on robust algorithms for handling various contact behavior such as contact dynamics [36],

thermo-mechanical friction [114], frictional wear phenomena [25], and fluid-structure contact prob-

lems [86].

Provided that contact phenomena affords the functionality of many devices over a broad

range of applications, and that abundant computational tools exist to model this behavior, the

natural progression in the design of such devices would be through optimization. The optimization

of contact related problems has received much interest within the scientific community. A wealth

of literature exists for unilateral (i.e. rigid-elastic) contact optimization problems; for review of

advances prior to the turn of the century, the reader is referred to [42]. In more recent studies,

shape optimization excluding contact surface geometry has been achieved using adaptive mesh

refinement techniques for small strain [43] and large strain problems [40].

Departing from conformal mesh optimization methods, topology changes have been afforded

through density methods in small strain [4], [94] and large strain [64], excluding the contact sur-

face from geometry control. The optimization of unilateral contact surface geometries have been

achieved with the level set method for small strain theory problems, for example [74]. Optimization

including the material interface geometry has been achieved for cohesive interface phenomena in

multi-material problems using small strain theory [63].

While the topic of contact problem optimization is nothing new, previous examples rely on

simplifications of the contact model (e.g. unilateral contact), exclusion of the contact interface

from geometry changes, or small sliding approximations, which limit the applicability of such

methods. The motivation of this research is to produce a robust optimization method for contact

problems, affording the greatest flexibility in allowable geometry changes, while expressing high

fidelity contact behavior between elastic materials. The framework must be carefully constructed

to allow for geometric and material nonlinearities, large sliding behavior, and eventual extension

to multi-phase (e.g. fluid-structure) contact problems.
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1.2 Original Work

This thesis contributes to the state of the art in the following research focus areas:

Optimization of Geometrically Linear Structures, Frictionless Contact: Previ-

ously, the application of topology optimization methods to shape surfaces in contact with de-

formable substrates had not been achieved. Relevant publications have focused on lightening mate-

rials surrounding the region of contact [4], [94], or optimizing the shape of surfaces in contact with

a rigid planar surface [74], [75], [77], [76]. For contact behavior between two deformable bodies, the

optimization of surface geometries involved requires a crisp definition of interfaces, robust treat-

ment of underlying physics, and a strong correlation of how changes of geometry affect a particular

design objective. To produce clearly defined interfaces and a high level of geometry control, this

work incorporates a level-set representation of object geometries and forward analysis using the

eXtended Finite Element Method. A gradient based optimization scheme and adjoint sensitivity

analysis allow for a high resolution of geometry sensitivities. This original work, summarized in

Chapter 8, led to a publication on the topology optimization of bilateral contact problems with a

frictionless interface in two dimensions [59].

Optimization of Geometrically Linear Structures, Material Cohesion: Material

cohesion provides resistance to shear and normal separation of joined materials, but can result

in rapid delamination when the cohesive limit is surpassed. Due to the complex behavior at

the interface, prior to [59], the optimization of problems with material cohesion had not been

explored. This work expanded the optimization framework developed for frictionless contact to

include treatment of material cohesion [57]. Recently, [63] leveraged a similar optimization method

to minimize the compliance of multi-material structures with interface cohesion in two dimensions.

The presented work summarized in Chapter 9 led to the first optimization of problems with interface

cohesion between two materials in three dimensions[9].

Optimization of Geometrically Nonlinear structures, Large Sliding Frictionless

Contact: In finite strain contact mechanics, the kinematic and constitutive nonlinearities which
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describe equilibrium are smooth and differentiable, whereas the interface conditions for contact and

separation introduce a sharp discontinuity. Contact forces only act to prevent the interpenetration

of bodies but vanish if the bodies separate. In addition to this sharp discontinuity, contact forces

depend on surface orientation. For problems exhibiting large relative motion between components,

care must be taken to identify overlapping regions along either respective surface. This imposes a

dependency of coincident surface location from either body in contact on the displacement field,

complicating the evaluation of design sensitivities. Due to these complexities, to date finite strain

and large sliding bilateral contact topology optimization has not been published. Chapter 10

presents this first topology optimization of finite strain, large sliding contact problems in two

dimensions.

1.3 Manuscript Organization

This manuscript is organized as follows. In Chapter 2 the concept of design optimization

is described, and the subset in which this research resides is identified. In Chapter 3, a brief

introduction to continuum mechanics is provided, followed by the definition of the physical behavior

which characterizes the problems studied in this work. A description of the physical behavior at the

contact interface is defined in Chapter 4. Chapter 5 defines the eXtended Finite Element numerical

model. A detailed description of immersed boundary numerical implementation of small sliding and

large sliding contact behavior is provided in Chapter 6. Mechanical model stabilization techniques

are the topic of Chapter 7.

The following three chapters focus on the exploration of a particular subset of contact behav-

ior. Each chapter includes an overview of related state of the art optimization studies, definition

of the particular contact behavior, model verification, optimization examples, and discussion of

results. Chapter 8 explores infinitesimal strain, small sliding frictionless contact behavior for two

dimensional problems. Chapter 9 studies infinitesimal strain, small sliding cohesive contact be-

havior for two and three dimensional problems. Two dimensional problems involving finite strain,

frictionless contact are explored in Chapter 10. Finally, conclusions of research contributions and
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suggestions for future work are provided in Chapter 11.
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Chapter 2

Design Optimization

2.1 General Theory

In a brief qualitative description, geometry optimization in the context of engineering is a

systematic approach to determining the best arrangement of materials to satisfy a particular design

objective. This approach can be expressed generically as a minimization of an objective function,

z, subject to a set of both inequality constraints, gj and equality constraints, hk.

min z(s,U)

s.t. g(s,U) ≤ 0

h(s,U) = 0

s ∈ R

(2.1)

Where the objective function and constraints are functions of real-valued abstract optimiza-

tion parameters, s, and the set of any state variable, U. For structural design optimization the set

of state variables must at minimum include structural displacements, but may also include addi-

tional components such as fluid state variables or temperature fields depending upon the physics

involved.

This research relies solely on computational treatment of physical problems, where the re-

sponse of an explicitly defined model is determined from equations of equilibrium, R = 0. When the

optimization problem defined in Equation 2.1 is applied to computational models, the equations of

equilibrium reside within the equality constraints, h. Instead of including the equilibrium equations
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formally within the optimization problem, this research uses a technique known as nested analy-

sis and design (NAND), where the state variables are expressed as functions of the optimization

variables.

U = U(s) (2.2)

This allows the equilibrium equations to be solved independent from the optimization algo-

rithm, reducing the overall size of the optimization problem. Additionally, NAND provides the

analyst freedom to choose the best framework for solving the equations of equilibrium, which is

commonly referred to as the “forward” analysis during the optimization process. Consequently,

this added modularity can cause an increased solution time and non-smooth behavior.

2.2 Optimization Algorithm

To solve the optimization problem, this work relies strictly on gradient based algorithms.

This requires the calculation of the gradients of the objective function and constraints with respect

to the optimization variables. The objective function and constraints can be expressed collectively

as the optimization problem, q.

q = q(s,U(s)) (2.3)

dq

ds
=
∂q

∂s
+
∂q

∂U

dU

ds
(2.4)

The equations of equilibrium used in the forward portion of analysis, R(s,U(s)), provide the

necessary correlation between state and objective variables to determine the last term of Equa-

tion 2.4.

dR

ds
=
∂R

∂s
+
∂R

∂U

dU

ds
= 0 (2.5)
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dU

ds
=

[
∂R

∂U

]−1 [
−∂R

∂s

]
(2.6)

Substituting back into Equation 2.4 results in the following analytical sensitivity expression.

dq

ds
=
∂q

∂s
+
∂q

∂U

[
∂R

∂U

]−1 [
−∂R

∂s

]
(2.7)

Equation 2.7 provides an analytical sensitivity expression in terms of gradients that can

be readily evaluated. However, depending on the number of design criteria and the number of

optimization variables, the order of evaluation can have a significant impact on the overall com-

putational cost. If the number of design criteria outweighs the number of optimization variables,

then the direct method is employed. If the number of design criteria are less than the number of

optimization variables, the adjoint method is preferable. The order of operations for each method

are depicted in Figure 2.1.

Figure 2.1: First operation to be performed depending upon the method employed.

For the design problems analysed in this work, the number of optimization variables often

outweigh the number of design criteria. Consequently, this work exclusively uses the adjoint method

of solving for sensitivities.

Numerous gradient based algorithms have been developed to solve general optimization prob-

lems. This work relies on the Method of Moving Asymptotes (MMA) algorithm for its effectiveness

in solving larger optimization problems. The MMA algorithm builds a local approximation based

on asymptotic limits defined relative to current optimization variable values. For more information

regarding the MMA algorithm, please refer to the works of Svanberg [95],[96].
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2.3 Optimization Classification

Having a general understanding of how design optimization is employed, we now move on

to the classification of the optimization problem. The classification of the optimization problem is

defined by the choice of how optimization variables, si, relate to the structural design. Relating

optimization variables to extrinsic properties such as cross sectional areas or length of a truss

member is referred to as size optimization. Using optimization variables to change the shape of

a structural domain is known as shape optimization. Both of these classes of optimization are

constrained to specific variations of the initial design.

To allow a more open ended design problem, we must first introduce the concept of topo-

logical equivalence. Consider the three design domains illustrated in Figure 2.3. Two domains are

considered topologically equivalent if there exists a continuously differentiable mapping between

the two, with a positive Jacobian determinant throughout. This mapping may distort the domain,

but any two adjacent points must remain adjacent after the transformation. Topology optimization

Figure 2.2: Example of topological equivalence. (a) and (c) are topologically equivalent, whereas
(b) is topologically inequivalent to both (a) and (c).

facilitates the creation of conceptually new designs by not requiring topological equivalence during

the the optimization process. This class of optimization provides a high level of design freedom,

which is advantageous for complex problems where the general solution topology is unknown.

Further distinction of optimization classification can be made with regards to problems in-

volving contact phenomena. Figure 2.3 illustrates an initial design configuration and four distinct

options for geometry control. The shape of external geometry excluding the interface can be al-
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tered (Fig. 2.3a), the shape of interface geometry (Fig. 2.3b) can be optimized, the topology of

the design including interface geometry can be altered (Fig. 2.3c), and design topology excluding

interface geometry can be optimized (Fig. 2.3d). The combination of options (c) and (d) lead to

the greatest flexibility in geometry control. Towards the goal of producing a robust methodology

for optimization of designs involving contact interactions, this work studies option (c) for two and

thee dimensional problems, and a combination of options (b) and (d) for two dimensional problems.

Chapter 2.4 briefly discusses various methods of relating optimization variables to structural design

and provides justification for the method of choice.

Figure 2.3: Classifications of geometry control in contact optimization problems; Γic and Γfc repre-
sent the initial and final contact interface geometry, respectively.

2.4 Geometry Model

Density methods, such as the Solid Isotropic Material with Penalization (SIMP) method,

have become popular for a wide variety of problems. Originally developed by [14] and [83] for

structural topology optimization, the SIMP method describes the geometry of a body by a material
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distribution within the design domain. A fictitious porous material with density, ρ, is introduced

to allow a continuous transition between two or more material phases. For more information and

an overview of recent developments, the reader is referred to [13]; [92] and [26]. Density methods

approximate the phase boundaries via spatial gradients in the material distribution, effectively

smearing the interface geometry. This issue has been studied for modeling design dependent surface

loads. A popular approach is to convert the surface load into a volumetric body force; see for

example [52], [91], and [118]. This approach does not explicitly define the interface geometry and is

of limited applicability to modeling contact. Alternatively, [39] apply loads on surfaces described by

iso-volumetric density curves. This technique introduces approximation errors in interface position

and orientation, rendering it unsuited for treatment of contact interactions. The only studies on

density methods for contact are restricted to problems where the geometry of the contact interface

is not altered in the optimization process; see Fig. 2.3a. In the work of [94] and [4] the contact

conditions are imposed on the same surface in a body-fitted mesh, independent of the density

distribution which may change in the elements next to the contact surface.

Level set methods (LSM) provide a promising alternative approach for topology optimization

problems where the structural response strongly depends on the geometry of the interface. The

interface is defined explicitly using an iso-contour of the level set function φ at a particular value,

commonly φ = 0. For a review of recent developments of LSMs, the reader is referred to [104].

The interface geometry is represented in the discretized mechanical model either via a body fitted

mesh, an Ersatz material approach, or immersed boundary techniques. For this work, geometry

control is defined by the LSM to maintain a precise definition of interface position and orientation.
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2.4.1 Two-Phase Problems

The material layout of a two-phase problem is described by a Level Set Function (LSF),

φ(s,x), as follows:

φ(s,x) < 0, ∀ x ∈ ΩA ,

φ(s,x) > 0, ∀ x ∈ ΩB ,

φ(s,x) = 0, ∀ x ∈ Γc ,

(2.8)

where x are the spatial coordinates. Instead of updating the LSF by the solution of the Hamilton-

Jacobi equation, as proposed by [108] and [1], in this work the parameters of the discretized LSF

are defined as explicit functions of the optimization variables.

The level set field can be parameterized to describe a set of geometric primitives, such as

circles or rectangles. The optimization variables define the location and the dimensions of the

primitives. This approach is used in the example provided in Section 8.4.2. To increase the design

freedom, we follow the approach of [55] and discretize the design domain by finite elements and

associate an optimization variable with each node, i.e. Ns = Nn, where Nn is the number of nodes.

The level set value at the ith node is defined by the following linear filter:

φi =

Nn∑
j=1

wij

−1
Nn∑
j=1

wijsj , (2.9)

with

wij = max (0, (r − |xi − xj |)) , (2.10)

where r is the filter radius, and xj the position of the jth node. The level set filter (2.9) widens

the zone of influence of the optimization variables on the level set field and thus enhances the

convergence of the optimization process [55]. This approach is used for select examples presented

in Chapters 8,9, and 10.

2.4.2 Three-Phase Problems

A popular approach to defining the spatial distribution of multiple materials with the LSM is

through the superposition of multiple LSFs. Originally developed for digital image processing [106],
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this method describes the layout of 2m materials with m LSFs. The individual phases are defined

by the set of signs of the LSFs; the interfaces are described by one of the LSFs being zero. Also

known as the ‘color’ level sets method, this method has been reported useful in several multi-phase

optimization studies [28, 109, 119].

In this study we take a similar approach by using two LSFs to distinguish three material

phases; however, we limit the spatial arrangement of these phases as follows:

φ1(s,X) < 0, ∀ X ∈ ΩA,

φ1(s,X) > 0, φ2(s,X) > 0, ∀ X ∈ ΩB,

φ1(s,X) > 0, φ2(s,X) < 0, ∀ X ∈ ΩV ,

φ1(s,X) = 0, ∀ X ∈ Γc,

φ2(s,X) = 0, ∀ X ∈ Γv.

(2.11)

This conditional treatment of the LSFs admits the definition of a third phase; however, ΩV is

restricted to reside within phase B through (2.11). For this work, the LSFs φ1 and φ2 are param-

eterized to describe a set of geometric primitives, such as circles or rectangles. The optimization

variables define the location and the dimensions of the primitives. To avoid the emergence of triple

junctions where φ1 = φ2 = 0, the limits smin and smax are carefully selected to ensure the geometric

primitives in φ1 do not intersect the geometric primitives in φ2. For example, consider two level let

fields used to define a two dimensional design, described by the following geometric primitives:

φ1 = s1 −
√

X2
1 + X2

2, φ2 =
√

X2
1 + X2

2 − s
2, (2.12)

where design variables s1 and s2 control the radius of the zero level set contour of either respective

field. The subscripts on X1 and X2 denote the cartesian x and y coordinates, respectively. With

initial given values of s1 = 2 and s2 = 1, to avoid interactions between the zero level set contour of

either field, one must choose optimization variable limits such that s1
min is greater than s2

max. This

approach is used in two examples presented in Section 10.
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Physics Model

This chapter provides a brief overview of the relevant fundamentals of continuum mechanics,

followed by the equilibrium relations used in this work. Greater detail of this topic can be found

in abundant literature, for example [67], [45], and [10]. Contact behavior comes in many different

forms, such as bonded, cohesive, frictionless, and frictional forms. The constitutive behavior of

contact phenomena will be elaborated in subsequent chapters where they are used in optimization

studies.

3.1 Kinematics

The motion and deformation of a homogenous body can be represented as a continuous field

of material points. Figure 3.1 illustrates a continuum body in two different configurations: where

B0 ⊂ R3 is the reference configuration of the body, and Bt ⊂ R3 is the current configuration at

time t. The transformation from reference to current configuration is defined by the unique and

continuously differentiable map:

ϕt : B0 → Bt. (3.1)

At a particular time t ∈ R+, the material points X ∈ B0 of the reference configuration can be

mapped to the points x ∈ Bt of the current configuration as follows:

ϕt : X 7→ x = ϕt (X) = x (X) . (3.2)
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Figure 3.1: Continuum body in the reference and current configuration at time t.

Subsequently, the inverse map is uniquely defined as X = ϕ−1
t (x). The displacement vector is

defined as the difference between the current and reference configuration:

u (X) = x (X)−X. (3.3)

The partial derivative of the deformation map x = ϕt (X) with respect to the coordinates X

is an essential kinematic quantity known as the deformation gradient:

F = ∇x =
∂x (X)

∂X
. (3.4)

The deformation gradient characterizes the behavior of motion in the neighborhood of a point.

Uniqueness of mapping ϕt requires that F is continuous and nonsingular. Therefore the derivative

of the inverse of motion X−1 with respect to the current position x exists so that

F−1 = (∇x)−1 =
∂X (x)

∂x
. (3.5)

We introduce the Jacobian determinant as J = det F, and the required smoothness of ϕt implies

J = det F > 0. (3.6)

The deformation gradient maps an infinitesimal line element dX at position X of the ref-

erence configuration to the infinitesimal line element dx at x in the current configuration. The
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transformation of infinitesimal line, area, and volume elements from the current configuration to

the reference configuration are defined as:

dx = FdX, (3.7)

da = JF−TdA, (3.8)

dv = JdV. (3.9)

The deformation gradient describes deformation uniquely, however, it still contains rigid body

motions which are not suitable for describing the strain of a body. The deformation gradient can

be separated into rigid body motion and stretch as

F = RU = vR, (3.10)

where R is an orthogonal rotation tensor, and the symmetric positive definite tensors U and v are

the right and left stretch tensors, respectively.

The right Cauchy-Green tensor C defines strain quantities in the absence of rigid body motion

as

C = FTF = (RU)T RU = UTRTRU = UTU. (3.11)

In this work we assume a uniform, fixed Cartesian coordinate frame, and define the Green-

Lagrangian strain tensor E as

E =
1

2
(C− I) , (3.12)

where I is the identity matrix. Furthermore, we can describe Green-Lagrangian strain in terms of

displacement gradients as

E =
1

2

(
∇u + (∇u)T + (∇u)T ∇u

)
=

1

2

(
∂u

∂X
+
∂u

∂X

T

+
∂u

∂X

T ∂u

∂X

)
(3.13)

For applications in which the displacement gradients are small, i.e. ∇u << 1, the Green-

Lagrangian strain can be further reduced to its approximate form known as the infinitesimal strain
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tensor

ε =
1

2

(
∇u + (∇u)T

)
=

1

2

(
∂u

∂X
+
∂u

∂X

T)
≈ E. (3.14)

The infinitesimal strain tensor is a linearized form of the Green-Lagrangian strain tensor.

With nonlinear strains defined and an approximate linearized version established, we now

turn our attention to the definition of stress.

3.2 Stress

As a result of the deformation of continuum bodies, stress resides between material points

within the body. In its most general form, stress can be defined as

t =
dfa
da

, (3.15)

relating a resultant force vector dfa to the infinitesimal area da in which it resides. Defining the

spatial normal of the infinitesimal area da as n, by Cauchy theorem

t = σ · n (3.16)

where σ is a symmetric spatial tensor field known as the Cauchy stress tensor, and n is the current

configuration surface normal of the infinitesimal surface da. Note that

nda = da, n0dA = dA. (3.17)

The Cauchy stress tensor represents the real internal stress state within a body at its current

configuration.

dfa = σ · nda = σda (3.18)

Using equation 3.8

dfa = JσF−TdA, (3.19)

we introduce the first Piola-Kirchhoff stress tensor as

P =
dfa
dA

= JσF−T , (3.20)
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which relates the resultant force vector within a body to the infinitesimal area in the reference

configuration. The passage from σ to P is known as the Piola transformation. The first Piola-

Kirchhoff stress tensor is non-symmetric by construction. By applying a pull-back operation on the

resultant force, dFa = F−1 · dfa:

dFa = JF−1σF−TdA, (3.21)

we introduce the second Piola-Kirchhoff stress tensor as

S =
dFa

dA
= F−1P = JF−1σF−T , (3.22)

which relates a non-physical resultant force vector (i.e. pulled back to the reference configuration)

to the infinitesimal area in the reference configuration. Although it does not admit any physi-

cal interpretation, the second Piola-Kirchhoff stress tensor is symmetric, and is parameterized by

material coordinates only.

Expanding equation 3.8,

nda = JF−T · n0dA, (3.23)

we define the surface Jacobian as

J =
da

dA
= J‖F−T · n0‖, (3.24)

which scales surface quantities from the current to the reference configuration. The following

transformation converts surface traction from the current to reference configuration:

P · n0 = F · S · n0 = σ · nJ . (3.25)

With the definitions of stress and mapping identities defined above, we turn our attention to the

governing equations of equilibrium.

3.3 Conservation of Momentum

The local balance of momentum in the current configuration, Bt, can be written as

∇ · σ + ρb = ρv̇, (3.26)
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where ρ is the material density, b is a body force (e.g. gravity force), and v̇ is acceleration.

Frequently, one must evaluate equilibrium in the reference configuration, B0. By applying a pull-

back operation and making use of Equations 3.20-3.22, the local balance of momentum referred to

the reference configuration can be expressed as

∇ ·P + ρ0b0 = ρ0v̇, (3.27)

or

∇ · (FS) + ρ0b0 = ρ0v̇, (3.28)

where

b0 = Jb (3.29)

and

ρ0 = Jρ. (3.30)

Provided the admissible test function η, the weak form in the current configuration can be

expressed as ˆ
Bt
ε (η) : σ dV +

ˆ
Bt
ρ (b− v̇) · η dV = 0. (3.31)

Through product rule differentiation and use of the divergence theorem, the weak form of equilib-

rium is expressed as

ˆ
Bt
ε (η) : σ dV −

ˆ
Bt
ρ (b− v̇) · η dV −

ˆ
∂Bt

(n · σ) · ηda = 0. (3.32)

Where ∂Bt represents the outer surface of the continuum body in its current configuration. Here we

introduce surface traction t̄ = n ·σ, which represents the Neumann boundary conditions prescribed

along the specified outer surface ∂Bt̄. For this paper, all problems analyzed are solved in a quasi-

static manner, therefore the inertial term goes to zero, ρv̇ = 0. The weak form of equilibrium in

the current configuration becomes

ˆ
Bt
ε (η) : σ dV −

ˆ
Bt
ρ (b) · η dV −

ˆ
∂Bt̄

t̄ · η dA = 0. (3.33)
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Similarly, the weak form of equilibrium can be expressed in the reference configuration as

ˆ
B0

F (η) : P dV −
ˆ
B0

ρ0 (b0) · η dV −
ˆ
∂BP̄

t̄0 · η dA = 0. (3.34)

Dirichlet boundary conditions are enforced strongly as

u = ū on ∂Bu, (3.35)

where ∂Bu is a specified subset of ∂B0. The weak form of the governing equations are defined

irrespective of the material constitutive behavior. For the related studies presented, the constitutive

behavior of the material is discussed next.

3.4 Material Constitutive Behavior

3.4.1 Infinitesimal Strain, Elastic

The response of a material is characterized by the constitutive equation which defines stress

as a function of deformation history of the body:

σ = f (ε) (3.36)

where for the current work f is assumed to be a monotonically increasing function. All materials

used are elastic, meaning that there is no energy dissipation in deformation. The reversibility and

path independence of elastic constitutive models implies that there exists a potential function w (ε)

such that

σ = f (ε) =
dw (ε)

dε
, (3.37)

where w (ε) is the strain energy density per unit volume. For infinitesimal strain theory, the

generalized Hooke’s Law defines a linear relation among all components of the stress and strain

tensor

w (ε) =
1

2
εT : C : ε, (3.38)

where C is a fourth order stiffness tensor of material properties. This tensor has 81 terms in three-

dimensional problems, and 16 components in two-dimensional problems. Thus, stress is defined as
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σ = C : ε. (3.39)

In this work we assume isotropic material behavior and a plane strain assumption for two-dimensional

problems.

3.4.2 Finite Strain, Hyperelastic

Elastic materials for which the work is independent of the load path are defined as hypere-

lastic. Hyperelastic material stress is often characterized by

S = 2
∂ψ (C)

∂C
=
∂w (E)

∂E
(3.40)

where ψ is the stored energy potential. When the potential is written in terms of the Cauchy-

Green tensor C, the notation ψ is used. The relation between scalar functions w and ψ is given by

w (E) = ψ (E + I) The stored energy function for a Neo-Hookean isotropic hyperelastic material is

defined as

ψ (C) =
1

2
λ0 (ln J)2 − µ0 ln J +

1

2
µ0 (traceC− 3) , (3.41)

where λ0 and µ0 represent the Lamé constants of the linearized theory. Consequently, the second

Piola-Kirchhoff stress as a function of the Cauchy-Green tensor is given by

S = λ0 ln JC−1 + µ0

(
I−C−1

)
. (3.42)

Thus far we have defined the physical model using both infinitesimal and finite strain theory;

including kinematics, structural equilibrium, and constitutive relations. However, we have not

yet defined the physical behavior at the interface in the presence of contact. Chapter 4 defines a

generalized contact model, which is applicable to the various forms of contact behavior explored in

this manuscript.
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Chapter 4

Contact Model

This chapter defines contact kinematics, followed by a generalized form of contact contribu-

tions to equilibrium. While contact behavior comes in a variety of forms such as frictionless sliding,

cohesion, frictional sliding, impact, lubrication, fatigue wear, etc., the scope of this paper is limited

to the topology optimization of problems involving conservative (i.e. path independent) contact be-

havior in the absence of inertial effects. Therefore, rate-based kinematics and constitutive relations

are omitted. For greater detail of contact phenomena, the reader is referred to [113].

4.0.1 Contact Kinematics

Often, contact problems involve large deformations and relative motion between two or more

structural components. In this section contact kinematics are formulated for finite deformations,

then further reduced to infinitesimal deformation problems. Figure 4.1 illustrates two continuum

bodies in the reference, Bp0, and current configurations, Bpt , where p = 1, 2. In the current config-

uration, both bodies contact along the boundary Γc. It is observed that positions ϕ1
t (X1, t) and

ϕ2
t (X2, t) are coincident in the current configuration. Hence, contact conditions must be formulated

with respect to the current configuration.

4.0.1.1 Normal Contact

Irrespective of the material constitutive behavior, non-penetration conditions must be satis-

fied where ϕ1
t

(
X1, t

)
= ϕ2

t

(
X2, t

)
. By introducing convective coordinates ξ along the outer surface
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Figure 4.1: Contact between two continuum bodies.

of body B1
t , we can relate every point x2 on the surface of B2

t to a point x1 (ξ) via the minimum

distance problem

min
x1⊆Γ1

c

∥∥x2 − x1 (ξ)
∥∥ , (4.1)

as depicted in Figure 4.2. With the associated position x̄1 known, we define the tangent vectors on

Figure 4.2: Coincident surface location along Γc.

the surface of B1
t at this point as

ā1
1 =

∂x̄1

∂ξ̄1
, ā1

2 =
∂x̄1

∂ξ̄2
. (4.2)
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Subsequently, the surface normal at x̄1 is defined as

n̄1 = −
(
ā1

1 × ā1
2

)∥∥ā1
1 × ā1

2

∥∥ . (4.3)

The normal gap value between both bodies is defined as

gn =
(
x2 − x̄1

)
· n̄1 ≥ 0. (4.4)

For infinitesimal strain theory, it is convenient to express the normal gap value as

gn =
(
u2 − ū1

)
· n̄1 + gnX ≥ 0, (4.5)

where gnX =
(
X2 − X̄1

)
· n̄1 represents the initial gap value.

Additionally, the definition of the normal gap can be further reduced if both surfaces are

coincident in the reference configuration, i.e. gnX = 0, and small sliding is assumed. The convec-

tive coordinates ξ define the coincident position of both surfaces in the reference configuration,

and define approximate coincident locations in the current configuration, rendering Equation 4.1

unnecessary. The normal gap value reduces to

gn =
(
u2 (ξ)− u1 (ξ)

)
· n1 (ξ) ≥ 0. (4.6)

4.0.1.2 Tangential Contact

The tangential relative motion between two continuum bodies is commonly used to describe

constitutive behavior such as stiction, sliding friction, and material cohesion. The tangential gap

between surfaces is defined as

g1
T =

(
x2 − x̄1

)
· ā1

1, g2
T =

(
x2 − x̄1

)
· ā1

2, (4.7)

where ā1
1 and ā1

2 represent either tangent vector along the surface. Although beyond the scope

of current work, it is worth noting that finite strain stiction and frictional relations are often

constructed in terms of tangential relative displacements and velocities, respectively.

For infinitesimal strain theory, it is convenient to express the tangential gap value as

g1
T =

(
u2 − ū1

)
· ā1

1 + gT1
X , g2

T =
(
u2 − ū1

)
· ā1

2 + gT2
X , (4.8)
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where gT iX =
(
X2 − X̄1

)
· ā1

i represents the initial tangential gap value for each tangent vector cor-

responding to i = 1, 2. The definition of the tangential gap can be further reduced if both surfaces

are coincident in the reference configuration, i.e. gT iX = 0, and small sliding is assumed. The con-

vective coordinates ξ define the coincident position of both surfaces in the reference configuration,

and define approximate coincident locations in the current configuration, rendering Equation 4.1

unnecessary. The tangential gap value reduces to

g1
T =

(
u2 (ξ)− u1 (ξ)

)
· a1

1 (ξ) , g2
T =

(
u2 (ξ)− u1 (ξ)

)
· a1

2 (ξ) , (4.9)

where ξ defines coincident locations along the interface between both bodies. This form of defining

the tangential gap is often used to construct cohesive constitutive relations at the interface.

4.0.2 Contact Boundary Value Problem

Contact behavior is represented as a boundary value problem, wherein surface traction exists

at the area of contact along either respective surface as illustrated in Figure 4.3. Surface traction

Figure 4.3: Surface traction along Γc.

tb for body b = 1, 2 is decomposed into normal and tangential components

tb = λbnb + τ b1ab1 + τ b2ab2, (4.10)
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where λ is the normal pressure at the surface, and τi is the tangential traction in the direction of

ai. We define the contact contribution Πc as

Πc =
2∑
b=1

ˆ
Γbc

gnλ
b + gt · τ bdΓ. (4.11)

Taking the variation of Equation 4.11 leads to the contact constraint formulation

rc =
2∑
b=1

ˆ
Γbc

δgnλ
b + gnδλ

b + δgt · τ b + gt · δτ bdΓ, (4.12)

Thus, the weak form of equilibrium in the current configuration 3.33 becomes

2∑
b=1

[ˆ
Bbt
σb : ∇ηb dV −

ˆ
Bbt
ρb
(
bb
)
· ηb dV −

ˆ
∂Bbσ

t̄b · ηb dA

]
− rc = 0, (4.13)

and the weak form of equilibrium referred to the reference configuration 3.34 becomes

2∑
b=1

[ˆ
Bb0

Pb : ∇ηb dV −
ˆ
Bb0
ρb0

(
bb0

)
· ηb dV −

ˆ
∂BbP

t̄b0 · ηb dA

]
− r0

c = 0, (4.14)

where r0
c represents the contact constraint formulation referred to the reference configuration. The

definition and variation of the normal and tangential gap depend on the underlying kinematic

assumption and the choice of discretization. They are discussed in detail in Chapter 6. The

constitutive behavior of λ and τ are presented for each Chapter that explores a particular interface

condition. Specifically, small strain frictionless contact behavior is studied in Chapter 8, small strain

cohesive contact behavior is explored in Chapter 9, and large strain frictionless contact behavior is

examined in Chapter 10
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Chapter 5

Numerical Implementation

Numerical simulation of interface phenomena may be carried out through different approaches,

such as: the boundary element formulation [117], the element free Galerkin method [11], and the

finite element formulation [116]. In standard finite element methods, a common approach is to

introduce an interface element between volume elements. Remeshing may or may not be necessary

depending on the magnitude of surface geometry changes in the mechanical deformation and design

optimization processes [38, 100, 12, 46]. The XFEM has been developed to model arbitrary dis-

continuities in the finite element model without remeshing. This method leverages the partition of

unity concept with appropriate enrichment functions to accurately resolve displacement fields along

the interface [69, 70]. A variety of contact modeling methods have been explored in the XFEM. A

penalty method has been employed to model small strain frictional contact problem using XFEM,

for example, by [61, 73, 51]. The XFEM framework has been used to investigate interface cohesion

effects on the mechanical performance of nano-structures [32]. A Lagrange multiplier formulation

has been used in a few approaches, see [35] and [2]. A mixed Lagrange multiplier formulation

has been applied for contact problems by [62] and mortar methods have been studied by [37], re-

spectively. Finite deformations have been considered in a few contact problems, for example, by

[79, 90, 50, 98, 15].
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5.1 XFEM Discretization

We adopt an immersed boundary technique, specifically the extended finite element method

(XFEM), for predicting the mechanical response. The reader is referred to [33] and [49] for an

introduction and general overview of the XFEM. Modeling contact problems with the XFEM has

shown great promise considering both friction and sliding contact. Assuming infinitesimal strains,

[61] and [73] enforce the contact conditions by a penalty method. The approaches of [35] and [2]

are based on a Lagrange multiplier formulation. Mixed Lagrange multiplier and mortar methods

are studied by [62] and [37], respectively. Finite deformations are considered, for example, by [79],

[90], [98] and [15]. In this study we adopt a Lagrange multiplier approach, similar to the one of [35],

for modeling sliding contact problems assuming a linear elastic material behavior and infinitesimal

strains. The particular framework for integrating the explicit LSM and the generalized formulation

of the XFEM used in this study are described in detail in [66] and [107].

For problems involving sliding contact and separation, the solution field at material bound-

aries are discontinuous. Therefore, a Heaviside enrichment strategy is used exclusively for this

work. For more information regarding different enrichment strategies, the reader is referred to [34].

The displacements, ui, throughout the design domain are defined as follows:

ui(x) =
M∑
m=1

(
H(−φ(x))

Ne∑
k=1

Nk(x) δA,kmp uA,mi,k

+H(φ(x))

Ne∑
k=1

Nk(x) δB,kmq uB,mi,k

)
,

(5.1)

where the Heaviside step function is:

H(φ) =


1, if φ > 0,

0, if φ ≤ 0 .

(5.2)

The shape functions are denoted as Ni(x), M is the number of enrichment levels, Ne is the number

of elemental nodes, up,mi,k is the degree of freedom of enrichment level m at node k corresponding

to the displacement ui in phase p ∈ {A,B}, and δ is the Kronecker delta. The Heaviside function
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turns on/off the interpolation functions associated with each material. For each material, multiple

enrichment functions may be necessary to interpolate the solution to multiple, disconnected regions

to prevent fictitious coupling or load transferring. The Kronecker delta, δp,kmq, applies the active

enrichment level q for node k such that the displacements at point x are interpolated by only one

set of degrees of freedom defined at node k, satisfying the partition of unity principle. To maintain

the continuity of the displacement field across the elemental boundaries, an appropriate enrichment

level is chosen. The approach used in this study is adapted from [66], for more description the

reader is referred to [66, 99, 101]. The XFEM allows the integration of the weak form of governing

equations in an intersected element by decomposing into triangles (2D) and tetrahedrons (3D) while

in non-intersected elements the displacement field is approximated by the standard finite element

interpolation.

For three-phase problems, we approximate the displacements ui(X) in phases A and B as:

ui(X) =

M∑
m=1

(
H(−φ1(X))

Ne∑
k

Nk(X) δA,kmq uA,mi,k + H(φ2(X))H(φ1(X))

Ne∑
k

Nk(X) δB,kmp uB,mi,k

)
.

(5.3)

The Heaviside function applied to the LSF φ2 serves to turn off the approximation in the void

phase. Aside from this deviation, the displacement field is approximated in the same manner as for

two phase problems. For both two and three phase problems, the intersected elements in phases A

and B are triangulated for integration purposes.

In this paper, the displacements are approximated by quad-4 and hex-8 elements in 2D and

3D, respectively. The stabilized Lagrange multiplier for the contact non-penetration condition

described in Equation (9.7) is approximated as being element-wise constant. The Lagrange multi-

pliers are condensed out locally to determine the structural response. To cure the ill-conditioning of

the XFEM formulation associated with small intersections, the geometric preconditioning scheme

detailed by [56] is employed.



www.manaraa.com

Chapter 6

Numerical Implementation: Contact Contributions

The XFEM discretized model requires contact contributions defined in Equation 4.12 to

be evaluated in a piece-wise fashion along immersed boundaries. This chapter provides detailed

definition of how this is accomplished in small strain and large strain problems. Considering the

mechanical response is solved via an iterative Newton-Raphson procedure, the generalized contact

tangent stiffness contributions are defined as

Jc =
∂rc
∂u

=
2∑
b=1

[ˆ
Γbc

∂

∂u

(
δgnλ

b + gnδλ
b + δgt · τ b + gt · δτ b

)
dΓ

+

˛
Γ́bc

(
δgnλ

b + gnδλ
b + δgt · τ b + gt · δτ b

) ∂Γbc
∂u

dΓ́
]
, (6.1)

where Γ́bc is the boundary along the area of contact. The tangent stiffness consists of two compo-

nents: the first accounts for the derivative of the integrand, and the second accounts for changes

in the area of contact with respect to displacements. The following sections define how small slid-

ing and large sliding assumptions affect the residual and Jacobian contributions from contact. In

Section 6.1, we define the discretized mechanical model where relative sliding between surfaces is

negligible. In Section 6.2, two distinct approaches are provided for the discretized contact model

considering non-negligible sliding.

6.1 Small Sliding

For two-phase material geometry prescribed by a single level set field, contact surfaces are

always coincident in the undeformed configuration. Considering small sliding contact kinematics,
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a typical XFEM intersected is illustrated in the current configuration in Figure 6.1. With a small

Figure 6.1: XFEM intersected element in current configuration, small sliding.

sliding assumption, the convective coordinates ξ describe coincident location along the interface in

the reference configuration, and approximate coincident location in the current configuration. This

affords the use of the normal and tangential gap as defined in Equations 4.6 and 4.9. With the

XFEM, the solution at the immersed interface is defined as

uA (ξ) =

NA
s∑

i=1

ηAi (ξ) ûAi , uB (ξ) =

NB
s∑

i=1

ηBi (ξ) ûBi , (6.2)

where ηi are the shape functions associated with the solution field of either phase, and ûi are the

discrete solution vectors for either phase.

With infinitesimal strain theory, the current configuration surface tangential and normal

vectors are assumed to be approximately constant, i.e.

δaA1 ≈ 0, δaA2 ≈ 0, δnA ≈ 0. (6.3)

With Equations 6.2 and 6.3, the variation of the normal and tangential gap components in the

contact constraint formulation 4.12 are defined as

δgn =
(
ηBi (ξ)− ηAi (ξ)

)
· nA (ξ) (6.4)



www.manaraa.com

32

δgT =
(
ηBi (ξ)− ηAi (ξ)

)
· aAα (ξ) (6.5)

where α = 1, 2 corresponds to either surface tangent vector. Additionally, the small sliding as-

sumption implies

∂Γbc
∂u
≈ 0, (6.6)

which eliminates the second term in the tangent stiffness contribution from contact (Equation 6.1).

6.2 Large Sliding

As material strains exceed the small strain limit or the relative displacements between surfaces

surpass the element side length, the ability to compute a structural response accurately becomes

increasingly difficult. Contact search algorithms, nonlinear kinematics, irrotational stress-strain re-

lations, and reference configuration mapping are well studied aspects of evaluating a correct physical

response. While nonlinear kinematics, irrotational stress, and reference configuration mapping are

all tractable with regards to evaluating gradient based design sensitivities, large sliding behavior

imposes a dependency of the location of contact on the displacement field. The transportive rela-

tionship between the displacement field and coincident surface location must be carefully evaluated

to ensure the tangent stiffness, and subsequently design sensitivities, are accurate.

In the context of Finite Element based mechanical models, there are a number of methods for

constructing coincident mesh entity pairs to evaluate contact related governing equations. These

methods include Node-to-Node (NTN), Node-to-Surface (NTS), and Surface-to-Surface (STS) pair-

ing. The XFEM preserves the definition of the interface and is extensible to any of these methods.

The main departure from FEM is that instead of constructing contact relations between element

nodes and surfaces, the XFEM must interpolate the solution to intersection points and the zero

level set iso-surfaces within elements. To integrate the weak form of contact governing equations

uniformly, this work relies solely on the STS pairing of intersected element surfaces.

Presented in this chapter are two distinct methods for constructing and integrating STS pairs
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for two dimensional problems: the segmented approach, and the coupled parametric approach.

The segmented approach assumes a piecewise-linear discretization of the surface, and recovers a

globally consistent tangent system by constructing auxiliary contact variables related to the limits

of integration for each STS pair. The coupled parametric approach is generalized to any surface

discretization, and accounts for the transportive relationship between surfaces inherently.

6.2.1 Segmented Approach

When the relative motion between two bodies in contact approaches the scale of the elemental

side length, the assumption of coincident structural facets is no longer valid. An illustration of how

this would appear in the framework of the XFEM is provided in Figure 6.2, where subscripts denote

the element number and superscripts represent the phase. Contact contributions between surfaces

can no longer be determined at the elemental level. Instead, we must determine the deformed

configuration overlap of continuous regions along the immersed interface. The segmented approach

Figure 6.2: Visualization of large sliding contact within the XFEM: (a) illustrates a disassembled
view, whereas (b) and (c) depict the elements in their undeformed and deformed configurations,
respectively.

assumes each surface is piece-wise linear, and coincident surface location is linearly distributed

throughout the domain of integration.
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6.2.1.1 Contact Search Algorithm

For large relative motion, a two-step search algorithm is employed during each Newton-

Raphson iteration throughout the analysis to determine surface projections. A global search gathers

all intersected elements, and interpolates the solution field from either respective phase to the zero

level set iso surface. With the deformed position of the interface known, a local search algorithm

cycles through continuous regions of the deformed interface to construct STS pairs. For each pair of

elements that successfully project onto one another within a specified search radius, a STS contact

element pairing is constructed as shown in Figure 6.3.

Figure 6.3: Contact element pairing between intersected elements.

The local search algorithm begins by cycling through all immersed boundary segments from

material ΩA and comparing them to every boundary segment from material ΩB. An initial geomet-

ric proximity check is performed. If both segments are within a specified distance from each other,

typically h to 3h where h is the element side length, the search algorithm then determines if a

viable STS pair can be constructed. This process begins by transforming the coordinate system of

both segments to one aligned with the surface of ΩA. This process is illustrated in Figure 6.4. The

intersected element edge locations in the current configuration are evaluated in the new coordinate

system. Coordinates ξ1−2 are compared to ξ3−4 to determine the configuration of overlap. A total
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Figure 6.4: Contact element pairing between intersected elements.

of nine configurations exist for how these segments may overlap, illustrated in Figure 6.5. Positions

Figure 6.5: Configurations of overlap.

ξ1 and ξ2 from ΩB are either equivalent, greater, or less than ξ3 and ξ4, respectively. Based on
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the particular configuration encountered, the deformed surface normal of material ΩA is used to

project and evaluate new limits of integration if necessary. The integration limits in the reference

configuration are recorded and stored with each STS pair created.

Re-entrant corners take careful consideration to ensure that incorrect STS pairs are avoided.

As an example, consider the configuration illustrated in Figure 6.6. In this particular example,

surface segment ΓA is to be compared to segments ΓB1−5 to determine the appropriate contact

pairs. The local search algorithm detects ΓB1 through ΓB5 as overlapping with ΓA after transforming

Figure 6.6: Re-entrant corner example.

to the new coordinate system aligned with ΓA. To remove incorrect surface pairing, each surface

segment is numbered in successive order along the interface perimeter. After determining the closest

proximity surface segment (ΓB3 ), all other contact pairs with ΓA are revisited. If the other contact

pairs are a topological neighbor to ΓB3 , e.g. ΓB2 and ΓB4 , they are still candidates for being kept as

correct contact pairs. The deformed surface normals nA and nBi are compared, where nBi is the

surface normal of candidate segment ΓBi . If the surface normals are not opposing, the candidate

is rejected. Thus, ΓB4 is determined to be an incorrect STS pair and removed. Since ΓB5 is not a

topological neighbor of ΓB3 , it is also considered an incorrect STS pair. This process is repeated
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for each accepted candidate. Thus, ΓB1 would also be removed as a pair with ΓA. Although it is

a topological neighbor of ΓB2 , which was an accepted surface pairing, the surface normal does not

oppose that of ΓA.

6.2.1.2 Coincident Surface Location

The contact search algorithm imposes a dependency of surface overlap on the displacement

field. While an infinitesimal sliding assumption yields only intrinsic tangent stiffness contributions,

finite sliding introduces transportive tangent stiffness contributions. To attain global tangent stiff-

ness consistency, and subsequently accurate design sensitivities, one must consider how the contact

search algorithm affects the equilibrium of the system. In two dimensions, the contact search al-

gorithm determines four distinct limits of integration per element pair: two along the interface of

either respective body as shown in Figure 6.7. These convective coordinate integration domain

limits are treated as additional degrees of freedom.

Figure 6.7: Each pair of contacting elements introduce 4 additional degrees of freedom: the inter-
section locations of each surface.

Provided that c1 projects onto c3, and c2 projects onto c4, with a linear discretized interface,

we assume that the distributed points from either surface in between the limits of integration are

relatable by:

ξc =

(
ξA − c3

)
c4 − c3

=

(
ξB − c1

)
c2 − c1

, 0 ≤ ξc ≤ 1, (6.7)
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and the displacements along either surface are known to be

uA (ξc) =

NA
s∑

i=1

ηAi

((
ξA − c3

)
c4 − c3

)
ûAi , (6.8)

uB (ξc) =

NB
s∑

i=1

ηBi

((
ξB − c1

)
c2 − c1

)
ûBi . (6.9)

With Equations 6.2 and 6.3, and with constant normal and tangential vectors for each segment of

the interface, the variation of the normal and tangential gap components in the contact constraint

formulation 4.12 are defined as

δgn =
(
ηBi (ξc)− ηAi (ξc)

)
· nA (6.10)

δgT =
(
ηBi (ξc)− ηAi (ξc)

)
· aAα (6.11)

To overcome rank deficiency caused by the additional variables, residual equations are constructed

with respect to the limits of integration:

rs =



c1 − S.A. (c1)

c2 − S.A. (c2)

c3 − S.A. (c3)

c4 − S.A. (c4)


, (6.12)

where c1−4 represents the integration limit variables in the convective coordinate system of either

surface, and S.A. (c1−4) represents the search algorithm’s determined location for c1−4 based on

the displacements of either respective surface. This yields the coupled system of equations∂rc∂u
∂rc
∂c

∂rs
∂u

∂rs
∂c


∆u

∆c

 =

rc
rs

 . (6.13)

The residual equations (rs) are created in a manner that is least computationally inten-

sive. Considering the search algorithm updates integration limits every Newton iteration, rs is
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conveniently always zero. The tangent stiffness matrix term ∂rs
∂c becomes the identity matrix. By

condensing out the added degrees of freedom, the tangent stiffness for state variables becomes

[∂rc
∂u
− ∂rc

∂c

∂rs
∂u

]
∆u = ru. (6.14)

Through condensation, it is clear from Equation 6.14 that ∂rc
∂u is the intrinsic portion of the tangent

stiffness, and −∂rc
∂c

∂rs
∂u is the transportive term of the tangent stiffness.

6.2.1.3 Summary

Although this method recovers global tangent stiffness consistency, it is heavily limited by

the assumptions made. It is only suitable for linear interpolation of the zero level set iso-contour,

and is not extensible to three dimensional cases. Additionally, due to the assumption of linearly

distributed surface overlap within each contact element pair, the terms ∂rc
∂c and ∂rs

∂u do not easily

yield an analytical expression and are evaluated through a finite difference method. The associated

computational expense is compounded for evaluating design sensitivities, rendering this method

ill-suited for optimization problems.

6.2.2 Coupled Parametric Approach

Structural response due to contact phenomena is also highly sensitive to surface geometry. A

linear discretization of a surface yields sharp corners at element boundaries. These sharp corners

often result in high response prediction error for surface to surface contact formulations. To allow

for a continuous description of a broad range of surface geometries and derive the influence of

the search algorithm on the physical response, contact mechanics are built from a parametric

representation of each surface.

6.2.2.1 Surface Parametrization

Geometric parametrization is a method of describing the location of all points which reside on

a particular object. It is especially useful to parameterize domain entities of reduced dimensionality.
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For example, a one dimensional curve existing in a higher dimensional space can be defined by a

single parameter, or a two dimensional surface in a higher dimensional space can be defined by two

surface parameters.

The cartesian coordinates for any given point on a surface can be defined as a general function

of curve parameters and control variables:

Xi = fi (αj , ck) (6.15)

where fi is an arbitrary function of curve parameters αj and control variables ck for dimension Xi.

In the context of defining structural surfaces for contact, subscript i = 1 − 3, j = 1 − 2, and k

can be any number of surface control variables. Surface tangent vectors and normal vector can be

defined at any given point as follows:

~t01 =
∂Xi

∂α1
, ~t02 =

∂Xi

∂α2
, ~n0 = t1i × t2i (6.16)

where ~t01, ~t02, and ~n0 are the two surface tangents and surface normal respectively. For the derivation

of surface quantities such as normal pressure or tangential traction, it is necessary to normalize

normal and tangent vectors. For large strain contact relations, it is often necessary to know surface

information in both the reference and deformed configuration. The lagrangian description of the

deformed surface position is as follows:

xi (αj , ck) = Xi (αj , ck) + ui (Xi (αj , ck)) (6.17)

where xi is the deformed position of the surface at location αj . The same relations for determining

surface tangents and surface normal vectors can be applied to the deformed position xi.

~t1 =
∂Xi

∂α1
+
∂ui
∂Xj

∂Xj

∂α1
, ~t2 =

∂Xi

∂α2
+
∂ui
∂Xj

∂Xj

∂α2
, ~n = t1i × t2i (6.18)

As an example, consider the surface defined by:

X = α1, Y = α2, Z = sin (c1α1) + cos (c1α2) (6.19)

with a known solution field of:

ux = 0, uy = 0, uz = XY (6.20)
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where c1 = 2π. For the range 0 ≤ α1 ≤ 1 and 0 ≤ α2 ≤ 1, the parametric surface is illustrated

in Figure 6.8. Reference configuration surface tangents and normals can be continuously described

0

0.5

1

0

0.5

1
−2

−1

0

1

2

Figure 6.8: Parametric surface defined by sine and cosine functions.

as:

~t01 =


1

0

c1 cos (c1α1)

 , ~t02 =


0

1

−c1 sin (c1α2)

 , ~n0 =


c1 cos (c1α1)

c1 sin (c1α2)

1

 (6.21)

and the deformed configuration tangent and normal vectors become:

~t1 =


1

0

c1 cos (c1α1) + α2

 , ~t2 =


0

1

−c1 sin (c1α2) + α1

 , ~n =


−c1 cos (c1α1)− α2

c1 sin (c1α2)− α1

1


(6.22)

This method of defining surface location and orientation through parametrization is easily

applied to two dimensional domains with one dimensional surfaces. Only one surface parameter

exists, and the second tangent vector is orthogonal to the design domain. Within the framework of

XFEM, it is convenient to allow the intersection points along element edges to be control variables

for each parametric surface segment. With a parameterized surface framework, the user may define



www.manaraa.com

42

any continuous representation between element boundaries. Ideally, this definition would include

additional control variables which maintain C1 continuity across element boundaries.

6.2.2.2 Continuous Coupling of Overlapping Structures

To provide a continuous representation of overlapping structures, we wish to couple both

surface parametrization schemes. Thereby defining two surface locations with a single set of pa-

rameters. Consider two continuum bodies approaching contact in the deformed configuration as

seen in Figure 6.9: where Xi and ui are the position and displacements along the surface of con-

Figure 6.9: Parametric representation of Surfaces A and B.

tinuum bodies A and B. Surface geometries of either body can be expressed as arbitrary functions

of curve parameters α and β. To establish a relationship between surface parametric locations α

and β, one can restrict the deformed locations of either surface to be coincident provided some

projection based on surface orientation. Arbitrarily, surface normal nAi is chosen as a projection

direction, and the following surface relationship is established:

rp = XA
i (α) + uAi

(
XA
i (α)

)
+ gnn

A
i

(
XA
i , u

A
i

)
−XB

i (β)− uBi
(
XB
j (β)

)
= 0 (6.23)

where gn is the unknown scalar projection distance. Conveniently, this by definition is the normal

gap value between surfaces. For the two-dimensional case presented in Figure 6.9, this equation

must be satisfied in both X1 and X2 dimensions. Currently the system of equations is under-
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determined, since α, β, and gn are unknown. This illustrates in the most basic sense the need

for a ‘master-slave’ approach. By choosing position α, we can solve for the remaining two un-

knowns. This method is scalable to three dimensions, resulting in 3 equations and four surface

parameters:α1, α2, β1, β2. With α1 and α2 known, we can solve for β1, β2, and gn. For the remain-

der of this topic, superscript A will be changed to m and superscript B will be changed to s to

identify master and slave objects.

For a chosen position α, it can be observed that if either displacements are perturbed, the

scalar gap gn and slave surface position β must change for Equation 6.23 to hold true. While

describing contact interactions using parametric representation of surfaces is common practice

within the field of computational mechanics [113], describing both surface positions with one set of

parameters requires careful consideration when the state equilibrium drives geometry optimization.

6.2.2.3 Master-Slave Surface Dependencies

Normal Position Relations Consider a continuous solution field that is defined as a

function of discrete variables. For a finite element based mechanical model, a locally continuous

solution of either surface can be defined as some spatial interpolation of discrete state variables:

upi (ψ) =
∑
k

Nk

(
Xp
i

(
ψ, cpj

))
ûpik (6.24)

where superscript p denotes the master or slave body,ψ represents the parametric coordinate for

either surface, subscripts i and k represent dimension and interpolation space, N denotes an ap-

propriate interpolation function, cj are the parametric control variables, and û represents the

discrete solution. We wish to uniquely describe the position and solution of both surfaces given

one parametric coordinate (α). While the master surface spatial interpolation remains as defined

in Equation 6.24, through continuous mapping the slave surface spatial interpolation becomes a

function of the master surface position.

usi (α) =
∑
k

Nk

(
Xs
i

(
β
(
α, cmj , c

s
j , û

m
i , û

s
i

)
, csj
))
ûsik (6.25)
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Note that the slave surface solution usi for a given master surface location α is now a function

of the discrete solution of both bodies. These dependencies can be intuitively expressed by taking

the variation of the continuous slave surface solution.

δ (usi ) =

(
∂usi
∂Xs

j

∂Xs
j

∂β

∂β

∂ûmk

)
δûmk +

(
∂usi
∂Xs

j

∂Xs
j

∂β

∂β

∂ûsk
+
∂usi
∂ûsk

)
δûsk (6.26)

The parametric control variables cpj are related to geometry description, and are independent of

the mechanical response during the forward analysis. Sensitivity dependencies will be discussed

in Section 6.2.2.7. The first term can be interpreted as the transportive relationship between

the master surface solution and the corresponding slave location. The second term contains both

transportive and intrinsic relations to the slave surface discrete solution. However, the dependencies

of the slave surface parameter β and normal gap gn on the discretized solution have not yet been

evaluated. These dependencies can be derived by taking the total derivative of Equation 6.23:

drp
dûpi

=
∂rp
∂ûpi

+
∂rp
∂gn

∂gn
∂ûpi

+
∂rp
∂β

∂β

∂ûpi
= 0 (6.27)

which is solved for the dependency of the normal gap and slave position on the discretized solution

∂gn/∂û
p
i and ∂β/∂ûpi .

During the evaluation of the tangent stiffness, many contact constitutive relations (Penalty,

Stabilized Lagrange, Nitsche, etc.) require the second order derivatives ∂2gn/∂û
p
i ∂û

p
j and ∂2β/∂ûpi ∂û

p
j

to be consistent. These dependencies can be derived by taking the second total derivative of Equa-

tion 6.23.

d2rp
dûpi dû

p
j

=
∂2rp
∂ûpi ∂û

p
j

+
∂2rp
∂gn∂û

p
i

∂gn
∂ûpj

+
∂2rp
∂β∂ûpi

∂β

∂ûpj
+

∂2rp
∂gn∂û

p
j

∂gn
∂ûpi

+
∂2rp
∂g2

n

∂gn
∂ûpi

∂gn
∂ûpj

. . .

+
∂2rp
∂gn∂β

∂gn
∂ûpi

∂β

∂ûpj
+
∂rp
∂gn

∂2gn
∂ûpi ∂û

p
j

+
∂2rp
∂β∂ûpj

∂β

∂ûpi
+

∂2rp
∂gn∂β

∂β

∂ûpi

∂gn
∂ûpj

+
∂2rp
∂β2

∂β

∂ûpi

∂β

∂ûpj
+
∂rp
∂β

∂2β

∂ûpi ∂û
p
j

= 0

(6.28)

With a continuous framework established coupling both master and slave surface position to a

single parametric coordinate α, we now turn our attention to defining tangential velocities between

surfaces.
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Tangential Motion Relations

By construction, the master and slave surface positions defined by parameter α project onto

one another in the direction of nmi . The tangential relative gap can be defined as:

gt = (xsi − xmi ) tmi (6.29)

where gt is the scalar tangential gap, xi is the deformed position of material p, and tmi is the master

surface tangent vector in the deformed configuration. Equation 6.29 will always be zero due to

Equation 6.23, however, the variation of the tangential gap is defined as follows:

δgt =

[(
∂xsi
∂ûsk

+
∂xsi
∂Xs

j

∂Xs
j

∂β

∂β

∂ûsk

)
tmi

]
δûsk

+

[(
∂xsi
∂Xs

j

∂Xs
j

∂β

∂β

∂ûmk
− ∂xmi
∂ûmk

)
tmi + (xsi − xmi )

∂tmi
∂umj

∂umj
∂ûmk

]
δûmk (6.30)

The relative tangent velocity can be described as:

ġt =

(
∂xsi
∂t
− ∂xmi

∂t

)
nmi + (xsi − xmi )

∂nmi
∂t

(6.31)

6.2.2.4 General Contact Equilibrium Enforcement

Figure 6.10: Interactions between two bodies in contact.

Consider two bodies, Ωm and Ωs, in contact as shown in Figure 6.10. For every point α on

the master surface, the normal gap and slave surface position β are uniquely defined through rela-



www.manaraa.com

46

tion 6.23. We wish to satisfy some equilibrium relation between both bodies to prevent penetration

along the surface:

rc =

ˆ
Γc

f (gn, u
m
i , u

s
i ) dΓc (6.32)

where f is an arbitrary equilibrium condition based on the solution fields of either body and the

relative gap between them, and Γc is the contact surface. Given the continuous relation afforded in

Equation 6.23 everything can be mapped to the master surface parametric coordinates. Using iden-

tity 6.33 we can convert our integration space from cartesian to the parametric coordinates, yielding

Equation 6.34. Note that Equation 6.33 holds for 2D problems, and would appear differently for

3D problems.

lim
n→∞

n∑
i=1

f (ci) ∆i =

ˆ b

a

f (x, y) d (s) =

ˆ b

a

f (x (α) , y (α))

√(
dx

dα

)2

+

(
dy

dα

)2

dα (6.33)

rc =

˛
f (gn (α) , umi (α) , usi (α))

∂Xm
i

∂α

dα (6.34)

If the solution field, parametric representation of either body, and equilibrium relations were

entirely continuous and differentiable, Equation 6.34 could be resolved analytically. However, given

the discontinuous nature of contact and piece-wise continuous spatial interpolation schemes of most

mechanical models, in practice this is rarely the case. In the following section, integration limits

are discussed for finite-element based mechanical models.

6.2.2.5 Integral Limit Dependencies

Piecewise continuous discretization necessitates the use of a search algorithm to find overlap-

ping elements in contact. Integration of residual contributions from contact requires constructing

elemental pairs from either surface that overlap. The pairing of contact surfaces and subsequent

integration boundaries are now related to displacements through a search algorithm. To recover a

fully consistent mechanical model, these integration boundary dependencies must be accounted for

in the tangent stiffness derivation.
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Figure 6.11: Limits of integration are dependent on elemental discretization of bodies in contact.

For a surface-to-surface formulation, we wish to integrate the residual and tangent stiffness

contributions over the shared region between both elements. If the integration limit coincides with

the master surface element boundary, as is the case for α̂2 in Figure 6.11, it is solution independent.

However, if the integration limit does not coincide with the master element boundary, as is the case

for α̂1, its position depends on how the slave element boundary projects onto the master element in

the deformed configuration. In this case, the slave surface element boundary position in parametric

coordinates β is known. The integration limit α̂1 can be found through projection in the deformed

configuration as seen in Figure 6.12.

Figure 6.12: Determining limits of integration based on element boundary projection.

The parametric coordinate α̂ can be found through a change of dependencies in our continuous
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mapping equation:

rp = Xm
i (α̂) + umi (Xm

i (α̂))− gnnmi ((Xm
i (α̂) , umi (Xm

i (α̂)))−Xs
i − usi = 0 (6.35)

where Xs
i and usi are the position and displacements at the slave element boundary. Similarly to

the previous section solving integrand dependencies, we can take the total derivative to determine

the relation between the limits of integration and the discrete solution field.

drp
dûpi

=
∂rp
∂ûpi

+
∂rp
∂gn

∂gn
∂ûpi

+
∂rp
∂α̂

∂α̂

∂ûpi

= 0 (6.36)

While developing a large sliding contact framework, care must be taken to ensure that the search

algorithm is consistent in defining limits of integration, as these dependencies will be accounted for

in the evaluation of the tangent stiffness of the system.

6.2.2.6 Consistent Tangent Stiffness

With a piecewise continuous solution field, our local contribution to equilibrium becomes:

rc =

ˆ α̂2

α̂1

f (gn (α) , umi (α) , usi (α))

∂Xm
i

∂α

dα (6.37)

where α̂1 and α̂2 are the search algorithm defined limits of integration based on element boundaries.

By derivation, our residual contribution has been fully mapped to a one dimensional space where

coordinate α has no dependencies on the solution. Taking the total derivative of Equation 6.37

with respect to the discretized solution:

drc
dûpi

=
∂rc
∂ûpi

+
∂rc
∂α̂1

∂α̂1

∂ûpi
+
∂rc
∂α̂2

∂α̂2

∂ûpi
(6.38)

where:

∂rc
∂ûpi

=
∂

∂ûpi

ˆ α̂2

α̂1

fα dα =

ˆ α̂2

α̂1

∂fα
∂ûpi

dα (6.39)

∂rc
∂α̂1

=
∂

∂α̂1

ˆ α̂2

α̂1

fα dα = −fα

α̂1

(6.40)

∂rc
∂α̂2

=
∂

∂α̂2

ˆ α̂2

α̂1

fα dα = fα


α̂2

(6.41)



www.manaraa.com

49

Variable fα denotes the equilibrium integrand after mapping to parametric coordinate α. Pulling it

all together, we arrive at our fully consistent tangent stiffness for a generalized contact equilibrium

condition.

drc
dûi

=

ˆ α̂2

α̂1

∂fα
∂ûi

dα+
(
fα


α̂2

)∂α̂2

∂ûi
−
(
fα


α̂1

)∂α̂1

∂ûi
(6.42)

The first term on the right hand side of Equation 6.42 is tangent stiffness of the integrand, which

is equivalent to the first term of Equation 6.1. The last two terms in Equation 6.42 account for

the changes in the area of contact with respect to displacements, which is equivalent to the second

term of Equation 6.1.

6.2.2.7 Design Sensitivities of the Parameterized Contact Model

For the gradient based design optimization outlined in Section 2.2, contact contributions to

design sensitivities must be derived:

∂rc
∂sk

=
∂rc
∂ci

∂ci
∂φj

∂φj
∂sk

(6.43)

where ci are the control variables related to surface geometry, φj are the discrete PDVs which

influence the parametric control variables, and sk are the ADVs which govern the PDVs. Derivatives

∂ci
∂φj

and
∂φj
∂sk

are solely related to the choice of parametric surface discretization (see Section 6.2.2.1)

and level set field control (see Section 2.4). Provided a robust definition of parametric surface

control variables, determining their sensitivities with respect to the ADVs is trivial. What follows

is a generalized derivative of the residual contributions with respect to the parametric control

variables.

The choice of parametric space is crucial to the way in which design sensitivities are evaluated.

Perhaps the most convenient option is to allow the parametric space to be a fixed range, 0 ≤ α ≤ 1,

which covers the local interface per element. Similar to the derivation of the consistent tangent

stiffness in the previous section, the derivative of the residual contribution with respect to the

design variables can be separated into integrand and integration limit contributions.

Integrand Design Dependencies
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Revisiting Equations 6.24 and 6.25, the cartesian location and displacements along a surface

are continuously described by the parametric parameters αj .

umi (α) =
∑
k

Nk

(
Xm
i

(
α, cmj

))
ûmik (6.44)

usi (α) =
∑
k

Nk

(
Xs
i

(
β
(
α, cmj , c

s
j , û

m
i , û

s
i

)
, csj
))
ûsik (6.45)

What has been largely ignored until this point are the control parameters ck which define structure

geometry.

Equation 6.43 is a contribution to the total derivative from Equation 2.7. By definition, the

derivative of residual contributions with respect to the ADVs is evaluated assuming the discrete

solution ûpi is fixed. The derivative of the continuous solution field upi at the contact interface with

respect to the control variables cpj can be derived as follows:

∂umi
∂cmk

=
∂umi
∂Xm

j

∂Xm
j

∂cmk
,

∂umi
∂csk

= 0 (6.46)

∂usi
∂cmk

=
∂usi
∂Xs

j

∂Xs
j

∂β

∂β

∂cmk
(6.47)

∂usi
∂csk

=
∂usi
∂Xs

j

∂Xs
j

∂β

∂β

∂csk
+
∂usi
∂Xs

j

∂Xs
j

∂csk
(6.48)

The derivative of the slave surface parameter with respect to the control variables, ∂β
∂cpk

, and the

derivative of the normal gap with respect to the control parameters, ∂gn
∂cpk

can be evaluated by taking

the total derivative of Equation 6.23.

drp
dcpi

=
∂rp
∂cpi

+
∂rp
∂gn

∂gn
∂cpi

+
∂rp
∂β

∂β

∂cpi
= 0 (6.49)

With all relations derived necessary for evaluating design sensitivities within the integrand of the

residual contribution from contact, we now turn our attention to the limits of integration.

Integral Limit Design Dependencies
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For the non-coincident overlap of two elements, such as depicted in Figure 6.11, the control

parameters (cpi ) will affect some or all integration limits for that particular element pair. If the

integration limit coincides with the master surface element boundary, it has no sensitivity with

respect to the design variables. However, if the integration limit does not coincide with the master

element boundary, it is dependent on the control variables cpi and subsequently the abstract design

variables by chain rule (Equation 6.43).

The derivative of each parametric integration limit α̂ with respect to control variables cpj can

be derived by taking the total derivative of Equation 6.35 with respect to the control variables:

drp
dcpj

=
∂rp
∂cpj

+
∂rp
∂gn

∂gn
∂cpj

+
∂rp
∂α̂

∂α̂

∂cpj
= 0 (6.50)

6.2.2.8 Complete Contact Residual Design Sensitivities

Recall the generalized local contribution to equilibrium from contact:

rc =

ˆ α̂2

α̂1

f (gn (α) , umi (α) , usi (α))

∂Xm
i

∂α

dα (6.51)

where α̂1 and α̂2 are the search algorithm defined limits of integration based on element boundaries.

Taking the total derivative of Equation 6.37 with respect to the control variables which define our

parametric space:

drc
dcpj

=
∂rc
∂cpj

+
∂rc
∂α̂1

∂α̂1

∂cpj
+
∂rc
∂α̂2

∂α̂2

∂cpj
(6.52)

where:

∂rc
∂cpj

=
∂

∂cpj

ˆ α̂2

α̂1

fα dα =

ˆ α̂2

α̂1

∂fα
∂cpj

dα (6.53)

∂rc
∂α̂1

=
∂

∂α̂1

ˆ α̂2

α̂1

fα dα = −fα

α̂1

(6.54)

∂rc
∂α̂2

=
∂

∂α̂2

ˆ α̂2

α̂1

fα dα = fα


α̂2

(6.55)
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Variable fα denotes the equilibrium integrand after mapping to parametric coordinate α. Pulling

it all together, we arrive at an analytical expression for the derivative of residual contributions with

respect to the parametric space control parameters.

drc
dcpj

=

ˆ α̂2

α̂1

∂fα
∂cpj

dα+
(
fα


α̂2

)∂α̂2

∂cpj
−
(
fα


α̂1

)∂α̂1

∂cpj
(6.56)

6.2.2.9 Summary

The coupled parametric approach yields a globally consistent tangent stiffness, is easily exten-

sible to higher order interface geometry, and can be used directly for three dimensional problems.

The transportive effects on the tangent stiffness are handled continuously, without any surface

discretization assumptions. The derived tangent stiffness and design sensitivities are fully analyt-

ical, greatly reducing the computational expense when compared to the segmented approach. For

all large strain examples presented in Chapter 10, the coupled parametric approach is employed.

Appendix A provides detailed examples of deriving coupled parametric weak form equilibrium

expressions from strong form contact constitutive relations.
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Chapter 7

Stabilization Techniques

While the XFEM unburdens model geometry and discontinuous displacement fields from

being mesh-conforming, it can result in an ill-conditioned system of equations when the ratio of

volumes on either side of the interface in an element is small. During topological changes on a fixed

mesh, this predicament is often unavoidable. For contact related problems, this ill conditioning

often results in artificially high stress predictions in thinly intersected elements. This can lead to

solution divergence for problems in which the contact constitutive equations rely on stress to satisfy

non-penetration conditions.

This work makes use of two separate approaches to mitigate ill-conditioning. The first method

of stabilization, presented in Section 7.1, is an XFEM-based geometric preconditioner, where a scal-

ing matrix is constructed to balance the system[56]. The second approach presented in Section 7.2

is known as a ghost-penalty method, wherein the gradient jumps of the solution field are penalized

along common facets of intersected elements[87].

Contact behavior can result in neutral and unstable equilibrium, hampering the convergence

of iterative solvers. At the apex before release, snap-fit designs or material anchors can experience

a brief moment of neutral stability. Rapid delamination of cohesive bonds can result in an abrupt

release of strain energy. For these reasons, this work makes use of a Levenberg-Marquardt similar

method of dynamic relaxation[72]. Described in Section 7.3, this method introduces an artificial

damping term to the tangent stiffness that vanishes as convergence is achieved.
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7.1 Geometric Preconditioner

As previously defined in Section 5.1, the degree of freedom up,mi,k interpolates the solution field

of enrichment level m to topologically connected subdomains of phase p. As this particular sub-

domain vanishes, the numerical model becomes increasingly ill-conditioned. To mitigate this issue,

we use the geometric conditioning approach of [56], which was introduced for 2D heat conduction

and flow problems. Geometric preconditioning does not change the variational formulation of the

problem, but makes the resulting linearized sub-problem easier to solve by balancing the influence

of all degrees-of-freedom in the system through the following projection:

ũ = Tu, (7.1)

where u is the vector of displacement variables, T is a transformation matrix, and ũ is the solution

vector in the transformed space. Likewise, the residual and stiffness matrix in the transformed

space are defined as

R̃ = TTR, (7.2)

K̃ = TTKT, (7.3)

where R and K are the residual and stiffness equations resulting from the weak form of governing

equations.

The preconditioner matrix T is a diagonal matrix constructed as a ratio of integrals of shape

function derivatives:

Tp
i,m =

(
max

Ωe∈Ωce

´
Ωe∩Ωpm

∇ν (x) · ∇ν (x) dΩ´
Ωe∩Ωp ∇ν (x) · ∇ν (x) dΩ

)−1/2

(7.4)

where Tp
i,m is the preconditioner value for the degree of freedom up,mi,k of node i, material phase p

and enrichment level m. Volume Ωc
e is the set of elements connected to node i, Ωp

m is the volume

of phase p that is integrated with enrichment level m with respect to node i, and ν (x) is the

set of admissible test functions. The values of this matrix increase as the region of influence of a
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particular degree-of-freedom decreases. To avoid very large values for the components of T, the

degrees of freedom associated with a particular diagonal entry Tp
i,m are constrained to zero if

Tp
i,m ≥ Ttol, (7.5)

where Ttol is a specified tolerance. For this paper, the specified tolerance is set to a value of

Ttol = 1.0 × 108. In the context of large sliding and finite strain contact problems, performance

studies related to geometric preconditioning are provided in Appendix B.2.

7.2 Ghost Penalization

As an alternative to the XFEM geometric preconditioner, ghost penalization mitigates ill-

conditioning by penalizing the flux jump of a state variable related quantity across element borders

in the vicinity of the material interface. For each material phase, ghost penalization is evaluated over

the entire intersected element border. In contrast to geometric preconditioning, Ghost penalization

augments the variational formulation of the physical model. It has proven successful for stabilizing

incompressible Navier-Stokes fluid flow problems [18], fluid incompressibility constraints [87], and

species field transport problems [17].

For the work presented in this paper, a geometric preconditioner proved adequate for the

stabilization of infinitesimal strain problems. For two-dimensional finite strain problems, residual

contributions for ghost penalization are evaluated as follows:

rGP =
∑

p∈{A,B}

Nm∑
m=1

ˆ
Γ0
e

γL
s
∂νi
∂Xj

{
n0
j JSikKn0

kdΓ, (7.6)

where the double bracket operator JK denotes the jump in a particular quantity. This form of ghost

penalization seeks to minimize the flux jump in stress at the element boarders in the vicinity of

the material interface. The local penalty parameter γL can be defined in two ways. First, it can

be expressed as a global constant value:

γL = γG . (7.7)
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As a second approach, the local penalty parameter can be defined as:

γL = 10εγG, (7.8)

and scaling factor ε is bounded by

εp =


0 if φ1φ2 ≥ 0∣∣∣ φφ∈pφ1−φ2

∣∣∣ if φ1φ2 < 0

, (7.9)

where φ1 and φ2 are the level set values of the nodes for a particular element edge, φφ∈p is the

node whose level set value matches phase p, and γG is the global penalization value. This localized

scaling places a stronger penalty on intersection configurations where the physical volume fraction

occupying the element is small. For edges that are not intersected, but are a part of an intersected

element, the scaling factor is set to ε = 0. The global penalization term is often scaled with the

element side length, i.e. γG = ch, where 0 < c < 1. In the context of large sliding and finite strain

contact problems, performance studies related to ghost penalization are provided in Appendix B.2.

7.3 Dynamic Relaxation

The discretized model yields a non-linear system of equations, which is solved in a quasi-

static manner using a Newton-Raphson iterative procedure. Convergence difficulties often arise

in Newton-Raphson based solvers when the solution approaches a strong material or geometric

nonlinearity. To mitigate these convergence issues, we use dynamic relaxation. This method uses

an artificial damping term which mitigates oscillations in the system response and increases the

stability and convergence toward the steady state solution. The damping parameter is updated

during the iterative solve based on convergence criteria, and vanishes as convergence is achieved.

Dynamic relaxation has been successfully used for solving variety of nonlinear problems such as

elasto-plasticity, wrinkling, large deflection analysis, simulation of atomic structures and materials

[120, 85, 80].

For problems presented in Chapters 9 and 10, we adopt a Levenberg-Marquardt similar algo-

rithm [72] for dynamic relaxation. Originally developed to solve non-linear least square problems,
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the Levenberg-Marquardt algorithm has shown to be useful in density method topology optimiza-

tion; specifically by reducing analysis instabilities caused by element distortion in large strain

compliant mechanisms [48]. In this paper we follow a similar approach by modifying the Jacobian

matrix as follows:

J̃ = J + β̃ diag(J) , (7.10)

where J is the original Jacobian of the system, β̃ is the damping parameter, and J̃ is the modified

Jacobian of the system, respectively. The basic algorithm and convergence criteria for computing

the structural response using an adaptive dynamic relaxation method are presented in Algorithm

1.

Algorithm 1: A basic algorithm for computing the structural response using the adaptive
dynamic relaxation method.

Input: damping parameter β̃int

1 for n← 1 to maximum time iterations do

2 Restart damping parameter: β̃n = β̃int

3 for k ← 1 to maximum Newton’s iteration do
4 for m← 1 to maximum dynamic relaxation iteration do

1) Compute new damping parameter for relaxation iteration

β̃n+1
(k+1)m

=

10β̃n if
∣∣∣Rn+1

(k+1)m

∣∣∣ > |Rn
k |

β̃n/10 if
∣∣∣Rn+1

(k+1)m

∣∣∣ ≤ |Rn
k |

2) Update the Jacobian matrix

J̃n+1
(k+1)m

= Jn+1
(k+1)m

+ β̃n+1
(k+1)m

diag(Jn+1
(k+1)m

)

3) Solve for current relaxation iteration

∆un+1
(k+1)m

= −(J̃n+1
(k+1)m

)−1Rn+1
(k+1)m

ûn+1
(k+1)m

= unk + ∆un+1
(k+1)m

4) Check the convergence of dynamic relaxation

if
(∣∣∣Rn+1

(k+1)m

∣∣∣ < ∣∣Rn+1
k

∣∣) or
(∣∣∣∆un+1

(k+1)m

∣∣∣ < ∣∣∆un+1
k

∣∣) then

accept current solution: un+1
k+1 = ûn+1

(k+1)m
go to next Newton’s iteration: k = k + 1
break

For each Newton step k, the physical response solver applies m dynamic relaxation iterations.
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Damping parameter β̃ is either increased or decreased depending on whether or not the norm

of the residual, |R|, has reduced from the previous iteration. If the norm of the residual or the

solution increment, |∆u|, has decreased from the previous Newton iteration, the solution increment

is accepted. However, if these convergence criteria are not met, the solution increment is rejected

and dynamic relaxation continues to the next iteration. The reliable convergence behavior afforded

by dynamic relaxation is offset by additional computational expense; for the numerical experiments

presented, the computational time required for response prediction often doubled. In the context of

large sliding and finite strain contact problems, performance studies related to dynamic relaxation

are provided in Appendix B.2.2.

7.4 Solution Correction Scaling

For large sliding frictionless contact behavior, from the authors experience, stabilization

of the physical response prediction is necessary primarily in situations of neutral instability and

snap-through behavior. In these scenarios, convergence behavior can be erratic. Considering the

contact search algorithm is performed with each Newton increment solution, this quickly can lead

to divergence if the displacement field produces incorrect contact STS pairs. As an alternative

approach to dynamic relaxation, this method of stabilization scales back the iterative displacement

field to a specified maximal value. The procedure for solution correction scaling is presented in

Algorithm 2.

As a minor deviation from the standard Newton-Raphson iterative procedure, this method

scales back the solution adjustment ∆un+1
(k+1) if the largest value exceeds a specified limit. For

the large sliding contact problems considered here, a specified maximum value in the range of

h/2 ≤ δmax ≤ h, where h is the element side length, proves adequate. In the context of large sliding

and finite strain contact problems, performance studies related to solution correction scaling are

provided in Appendix B.2.2.
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Algorithm 2: A basic algorithm for computing the structural response using the solution
correction scaling method.

Input: maximum allowable solution adjustment δmax
1 for n← 1 to maximum time iterations do
2 for k ← 1 to maximum Newton’s iteration do

1) Solve for current Newton iteration:
∆un+1

(k+1) = −(Jn+1
(k+1))

−1Rn+1
(k+1)

2) Scale back solution increment if necessary:

if max |∆un+1
(k+1)| > δmax

then

∆un+1
(k+1) = δmax∆un+1

(k+1)/max |∆un+1
(k+1)|

3) Accept solution increment:
ûn+1

(k+1) = unk + ∆un+1
(k+1)

go to next Newton’s iteration: k = k + 1
break
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Chapter 8

Small Strain Frictionless Interface Studies

This chapter investigates topology optimization of infinitesimal strain theory, small sliding,

frictionless bilateral contact problems in two dimensions. The material presented in this chapter

are condensed from the resulting publication[59].

8.1 Introduction

The response of structures composed of multiple components and the behavior of heteroge-

neous materials with multiple constituents are often dominated by mechanical interface phenomena,

such as contact, friction, and adhesion. The interface geometry typically has a strong influence on

these phenomena and needs to be designed carefully, considering in addition external loading con-

ditions and the material properties of the individual components and constituents. For example,

the geometry of anchors differs significantly, depending on the properties of the host material.

This chapter introduces a topology optimization method for problems involving sliding contact and

separation. While adhesion and friction are ignored here, the proposed computational framework

allows for the inclusion of other interface phenomena. Optimization of problems involving material

cohesion is the topic of Chapter 9.

Irrespective of whether other forms of kinematic or material nonlinearities are considered,

modeling contact leads to a nonlinear mechanical problem. Contact forces only act to prevent

the interpenetration of bodies but vanish if the bodies separate. Furthermore, the geometry of

the interfaces needs to be clearly defined, as the contact forces depend on both the location of
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the boundary and the surface normal. Due to these complexities, to date contact has only been

considered in very few topology optimization studies, following either a density or a level set

approach.

Myślińsky pioneered level set methods for shape and topology optimization of unilateral

contact problems where one of the bodies is rigid; see for example [74], [75], [77] and [76]. The

finite element method in combination with an Ersatz material approach is used to model contact

problems with and without friction. The contact interface location is defined by a Dirac function

and the contact conditions are enforced via Lagrange multipliers. Topological derivatives are used

to insert additional holes. The level set field is updated via the solution of the Hamilton-Jacobi

equation, a reaction-diffusion equation, or a phase field approach. The method is illustrated with

numerical examples where the shape of the contact interface and the internal layout are optimized.

This corresponds to a combination of options (b) and (d) in Figure 2.3 where one of the bodies is

rigid and does not change its topology.

In this chapter we build upon the work of Myśliński and expand it onto bi-lateral contact

problems where all bodies in contact deform elastically. The proposed method allows altering the

shape and topology of the contact interface. We use an explicit level set method to describe the

interface geometry between two distinct material phases. In contrast to advancing the level set field

by the Hamilton-Jacobi equations, explicit LSMs treat the parameters of the discretized level set

function as explicit functions of the optimization variables [104]. This allows solving the resulting

optimization problem by standard nonlinear programming algorithms.

The remainder of this chapter is organized as follows: in Section 8.2, we outline the formula-

tion of the optimization problems considered in this study. In Section 8.3, the mechanical model of

the contact problem is described. In Section 8.4, we study the main characteristics of the proposed

LSM-XFEM method with numerical examples. Insight gained from the numerical studies and areas

for future research are summarized in Section 8.4.4.
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8.2 Optimization Problem

In this chapter we consider the interactions between two solid phases, A and B, with sliding,

separable contact at the phase boundaries. A representative configuration of the problems discussed

in this chapter is shown in Figure 8.1. The design domain ΩD is composed by two non-overlapping

subdomains, ΩA and ΩB, such that ΩD = ΩA∪ΩB and ΓC = ΩA∩ΩB is the contact interface. The

displacements in phase A are prescribed at the boundary ΓAU while the second phase is subjected

to either a prescribed force or displacement controlled loading at the boundary ΓBU,N . Prescribed

displacements are denoted by the subscript U and prescribed forces by the subscript N .

In the examples presented in Section 8.4 we seek to minimize either one of two objectives: for

force controlled loading we seek to minimize the displacement at ΓBN , for displacement controlled

loading we maximize the reaction load at ΓBU .

To discourage the emergence of small geometric features and oscillatory shapes, we introduce

perimeter penalty term into the formulation of the objective function. The perimeter measures the

interface between domains ΩA and ΩB and is computed as follows:

P =

ˆ
Γc

dΓ (8.1)

While a perimeter penalty does not allow explicitly controlling the local shape and the feature size,

it has been reported effective in regularizing structural optimization problems [104]. In addition,

we constrain the ratio of volumes occupied by either solid, V A & V B, to exclude trivial solutions.

While the proposed optimization framework allows considering other objectives and constraints,

such as strain energy and displacement and stress measures, we found that the formulations of the

optimization problem used here are well suited to illustrate the influence of the interface condition

on the optimized design.
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Figure 8.1: Generalized optimization problem.

The optimization problem is defined by the following nonlinear program:

min
(
cu z(s,u) + cp P (s)

)
,

s.t. V B(s)− cv V A(s) ≤ 0

s ∈ S =
{
RNs |smin ≤ si ≤ smax, i = 1....Ns

}
,

(8.2)

where z denotes the contribution of the mechanical response to the objective, cu is the associated

weighting factor, cp is the weight of the perimeter penalty, and cv controls the desired volume ratio

between the two solids. The number of optimization variables is Ns; the lower and upper bounds

on the optimization variables are denoted by smin and smax, respectively.

The dependency of the objective function and constraints on the optimization variables, si,

are defined by the framework described in Section 2.2. Note that the objective also depends on

the structural response: z(s,u), where u denotes the vector of discretized state variables that are

considered dependent variables of s. The discretized state equations are described in Section 8.3.

The optimization problem is solved by a nonlinear programming (NLP) method, and the design

sensitivities are calculated by the adjoint method.

8.3 Physical Model

We consider two bodies in contact as shown in Figure 8.2. The bodies occupy the volume

ΩA and ΩB, respectively. Static equilibrium is described by the following state equations:

σpij,j + fpi = 0 in Ωp , (8.3)
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Figure 8.2: Continuum bodies in contact.

upi = Upi on ΓpU , (8.4)

σpij,jn
p
j = F pi on ΓpN , (8.5)

where σpij denotes the stress tensor and fpi are the body forces in phase p = A,B. The prescribed

displacements at ΓpU and the external surface loads acting on ΓpN are denoted by Upi and F pi ,

respectively. The outward pointing normal on phase p is npj . We assume a linear elastic material

behavior and a linear kinematic relationship:

σpij = Cpijkl ε
p
kl (8.6)

εpij(u
p
i ) =

1

2

(
upi,j + upj,i

)
, (8.7)

where Cpijkl and εpkl are the elastic and strain tensors in phase p.

At the phase boundaries, ΓC , the non-penetration condition is described as follows:

gn λ
p
n = 0, gn ≥ 0, λpn ≤ 0, p = A,B , (8.8)
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with

gn = nAi
(
xBi + uBi

)
− nAi

(
xAi + uAi

)
, (8.9)

λpn = σpij n
p
i n

p
j , p = A,B , (8.10)

where the gn is the gap between the bodies and λpn the surface traction in normal direction. To

prevent interpenetration, the gap needs to be positive. The surface traction vanishes if the bodies

are separated and is negative when the bodies are in contact. Thus, λpn serves as Lagrange multiplier

of the contact condition. As λAn = λBn , we drop the superscript for the phase in the following

discussion. Restricting our study to two-phase problems, the initial gap, nAi x
A
i +nB xBi , vanishes.

The XFEM discretization of the contact problem is based on the following stabilized weak

form of the governing equations:

∑
p=A,B

ˆ
Ωp
εij(v

p
i ) σ

p
ij dΩ−

∑
p=A,B

ˆ
Ωp
vpi f

p
i dΩ

−
∑
p=A,B

ˆ
ΓpN

vpi F
p
i dΓ−

ˆ
ΓC

[vi] λn n
A
i dΓ = 0 , (8.11)

where vi an admissible test function and [vi] = vAi −vBi denotes a jump across the contact interface.

Following [113], if the contact conditions are active, i.e. gn ≤ 0, the Lagrange multiplier λn is

governed by the following stabilized formulation of the contact conditions:

ˆ
ΓC

µ
(
λn − λ̃n − γ gn

)
dΓ = 0 , (8.12)

with

λ̃n =
(
κA σAij + κB σBij

)
nAi nAj , (8.13)

where µ is a test function for the non-penetration condition, λ̃n is a weighted average of the surface

traction in normal direction and κp are weighting factors such that κA + κB = 1. The larger the

penalty factor γ the better the non-penetration condition is satisfied, but the conditioning of the

problem deteriorates for large γ values. The formulations for κp and γ used in this work are given

below. If the interface separates and the contact condition is not active, i.e. gn > 0, λn vanishes.
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An active set strategy is used to handle the non-penetration condition when solving for the weak

form of the equilibrium equations (B.11).

8.4 Numerical Examples

This section first begins by verifying the accuracy of the frictionless contact model in the

XFEM to previously published results. Next, we illustrate the main characteristics of the proposed

optimization approach and compare designs optimized for various interface models, excluding tan-

gential behavior such as cohesion and friction. In the first example, we restrict the geometry to

simple primitives and optimize the location of the primitives. This leads to tractable optimization

problem with a small number of optimization variables. In the second example, we optimize the

interface geometry of an anchor without restricting the geometry variations.

For all examples, we assume plain strain and a quasi-static response. The interface model

describes sliding contact with separation, unless specified otherwise. Each example is discretized by

bi-linear elements using the XFEM scheme outlined in Section 5. The nonlinear contact problems

are solved by Newton’s method using an active set strategy for the contact conditions. A drop of

the residual of 10−9 relative to the initial residual is required. The external loads are applied in a

single step. A direct solver is applied to the linearized sub-problems.

The parameter optimization problems are solved by the Globally Convergent Method of

Moving Asymptotes (GCMMA) of [96]. The parameters for the initial, lower, and upper asymptote

adaptation are set to 0.5, 0.7, and 1.2, respectively. The relative step size, ∆s, is given with each

example. The design sensitivities are computed with the adjoint method. The reader is referred

to [7], [54] and [53] for an in depth discussion of sensitivity analysis for contact problems. In

this work, the partial derivatives of the state equations and objective function with respect to the

state variables are evaluated using analytically differentiated formulations. The partial derivatives

of the objective, constraints, and element residuals with respect to the optimization variables are

calculated by a finite difference scheme.
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8.4.1 Verification of Small Strain Frictionless Contact

Consider two rectangular materials of the same properties under compression as seen in

Figure 8.3. The square structural domain of side length L = 1m is composed of two non-overlapping

Figure 8.3: Small strain, frictionless contact benchmark setup.

subdomains ΩA and ΩB such that Γc = ΩA ∩ΩB is the contact interface. Subdomains ΩA and ΩB

are linear elastic hookean materials of the same properties, where frictionless contact is imposed at

Γc via a stabilized Lagrange method. Displacements at the top edge of ΩA are prescribed as UAx = 0

and UAy = −0.1, whereas the bottom edge of ΩB is fixed. This example is chosen to demonstrate

the convergence behavior of surface pressure and penetration error with mesh refinement, as well

as to provide a direct comparison to previous publications.

To examine the convergence behavior of the mechanical model, the problem was run for four

different mesh sizes: Mesh 1 consists of 5×5 elements, Mesh 2 contains 11×11 elements, Mesh 3 has

21×21 elements, and Mesh 4 consists of 41×41 elements. Surface pressures and normal penetration

errors were extracted at the interface for all models. Figure 8.4 demonstrates the surface pressure
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convergence with mesh refinement. Additionally, Figure 8.5 illustrates the normalized penetration

0 0.2 0.4 0.6 0.8 1
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

Figure 8.4: Surface pressure convergence with Mesh refinement. Mesh 1: 5 × 5, Mesh 2: 11 × 11,
Mesh 3: 21× 21, Mesh 4: 41× 41,.

error as the mesh is refined. Penetration error is the measure of relative displacement between

both surfaces in the direction of domain ΩB interface undeformed normal. It is normalized by the

domain length L. Finally, the integrated L2 error in the normalized penetration error is plotted in

Figure 8.6 as a function of degrees of freedom used in each mesh.

A similar benchmark study was performed by [62] and [44] using the extended finite ele-

ment method. For surface pressure stabilization the authors used an augmented Lagrange method

enforced at intersection boundaries of element. To further restrict the interpolation space of the

Lagrange multiplier, the authors used a Polynomial Pressure Projection technique (PPP) and a

Vital Edges method respectively. The current work differs by allowing the Lagrange multiplier to

be an element-wise constant variable, which is condensed out at the local level. Figures 8.7-8.8

compare the
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Figure 8.5: Penetration error convergence with mesh refinement. Mesh 1: 5× 5, Mesh 2: 11× 11,
Mesh 3: 21× 21, Mesh 4: 41× 41,.
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Figure 8.6: Integrated L2 error in surface penetration as a function of degrees of freedom used.
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Figure 8.7: Contour plot of Y displacements for (a) [44] and (b) current work.

Figure 8.8: Pressure along the interface for [62], [44], and current work.
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8.4.2 Bolted Plate

Figure 8.9: Bolted plate problem.

Plate Side Length L = 1.0 m
Bolt Location a = 1/4 m
Plate Thickness t = 1/15 m
Bolt Radius r = 0.065 m
Distributed Load FA = 0.1 N
Young’s Modulus EA = EB = 104 N/m2

Poisson Ratio νA = νB = 0.3
Spring Stiffness K = 106 N/m2

Response Weight cu = 1.0
Perimeter Weight cp = 0
GCMMA Step Size ∆s = 0.05

Table 8.1: Bolted plate parameters

A square plate of thickness t is fastened to a rigid surface by four bolts; see Figure 8.9. Phase

A represents the plate and phase B the bolts. The plate is subject to a distributed horizontal force

along the left edge and a distributed vertical force of the same magnitude along the right edge.

First we consider sliding contact and separation at the bolt-plate interface. The result for this

interface model is then compared against the solution assuming perfect bonding. The bolts are

connected to the rigid surface via distributed springs. The latter allows for an elastic deformation

of the bolts. The bolts and plate are made of the same material.

The optimization problem is to find the location of the bolts such that a weighted average of

the displacements in the direction of the external loads is minimized:

z =

ˆ
Γ1

2 u1dΓ +

ˆ
Γ2

u2dΓ . (8.14)

For this example, the volume ratio of the material phases and the interface perimeter are constant

due to problem setup. The penalty for the perimeter, cp, in (10.1) is set to zero and the constraint

on volume ratio is omitted, i.e. cv =∞.

The spatial arrangement of the bolts are described by the following level set function:

φ(x) = max
i

(
Rb − |x− xbi |

)
i = 1, 2, 3, 4 , (8.15)
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where Rb is the bolt radius and xbi the position of the bolt center. Varying xbi leads to a total of 8

independent optimization variables. The upper and lower bounds on the optimization variables are

chosen such that the bolts cannot penetrate the outer edges of the plate. The domain is discretized

with a uniform mesh of 60 elements along each edge. The problem parameters are given in Table 8.1.

Figure 8.10: Evolution of objective in design process with select design iterations visualized.

The optimization process is started from the initial configuration shown in Figure 8.9. The

evolution of the objective along with snapshots of the bolt configuration is depicted in Figure

8.10. The contour plot shows the von Mises stress in the plate. To better visualize the location

of the bolts, they are colored black. As one can expect, the bolts spread outwards to resist the

deformations near the applied loads.

The influence of the contact interface model can be observed when we compare to a design

optimized with an interface model that assumes perfect bonding; see Figure 8.11. The formulation

of the perfect bond model is described in detail in [66]. The design optimized with the contact

model exhibits a larger degree of asymmetry to reduce compliance due to sliding and separation
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Analyzed with Optimized for

Separable Fixed

Separable 1.2263 1.3656

Fixed 0.8998 0.8227

Table 8.2: Objective values of optimized designs when analyzed with different interface conditions.

at the interface. We quantify the dependency of the optimized design on the interface condition

by cross-comparing the optimized designs. Table 8.2 provides objective values for the optimized

geometries analyzed with the two interface models. Assuming sliding contact at the bolt-plate

interface, the geometry optimized for a sliding contact yields an 11% reduction of compliance when

compared to the geometry optimized for a perfectly bonded interface.

Figure 8.11: Contour plot of von Mises stress for optimized designs of (a) frictionless, separable
and (b) bonded interface conditions.

8.4.3 Material Anchor

In this example we seek to determine the optimal geometry of an anchor encased within host

material such that the holding force of the anchor is maximum. The problem setup along with the

initial seed of the anchor material is shown in Figure 8.12.

Phase A represents the host and phase B the anchor material. The anchor is fixed along the

boundary Γ1 which is not part of the design domain and where the material is prescribed to phase

B. The host material is pulled to the left by prescribing the displacements in x1 direction at Γ2,
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Figure 8.12: Material anchor design problem.

Host Side Length L1 = 1.0 m
Anchor Side Length L2 = 0.79 m
Cuboid Side Length L3 = 0.0833 m
Domain Thickness t = 1/15 m
Applied Displacement on Γ2 UA1 = −0.007 m
Phase A Young’s Modulus EA = 104 N/m2

Phase B Young’s Modulus EB = 104 N/m2

Poisson Ratio νA = νB = 0.3
Spring Stiffness K = 2× 103 N/m2

Response Weight cu = 1/EB

Perimeter Weight cp = 1/4
GCMMA Step Size ∆s = 0.008

Table 8.3: Nominal parameters of anchor design prob-
lem.

Γ3, and Γ4, i.e. ΓAU = Γ2 ∩ Γ3 ∩ Γ4. Note that the boundary ΓAU is constrained to zero in the

x2-direction, and is not part of the design domain. The material at ΓAU is set to phase A. Exploiting

the symmetry of the problem, only one half of the problem is analyzed.

The holding force of the anchor in x1-direction is measured by integrating the normal stress

σ11 along Γ1. The response dependent contribution, z, to the objective function in (10.1) is defined

as follows:

z = −
ˆ

Γ1

σ11dΓ . (8.16)

The optimization problem is regularized by applying a perimeter penalty, considering different

values for the weight cp. In the case of sliding and separable contact interface conditions, additional

constraints are not necessary for this example. Only when studying the influence of interface models

on the optimized design, a volume constraint is imposed to avoid trivial solutions.

The LSF is discretized by the same mesh used for the structural analysis. The nodal level

set values are defined as functions of the optimization parameters using the linear filter described

in Section 2.4. Discretizing half of the design domain with 120× 60 mesh, the smoothing radius is
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a factor of 4.5 times the element size. The lower and upper bounds for the optimization variables

are set to smin = −h and smax = h where h is the element side length. The LSF is initialized by

an 6× 5 array of cuboids within a square inclusion as shown in Figure 8.12. Note that additional

anchor material is placed to connect the patterned arrangement of material to Γ1. This ensures

that the boundary conditions along Γ1 and displacement controlled loading along Γ2 are applied

to the anchor and host materials, respectively.

Structural inclusions that are only constrained by sliding contact may be able to rotate

rigidly which cause an ill-conditioned system. To mitigate this issue, the host material is grounded

elastically by a distributed system of weak linear springs with stiffness K.

In the following numerical experiments we first illustrate the convergence behavior for the

nominal problem parameters, which are summarized in Table 8.3. We then consider different values

of the weighting factor cp for the perimeter term in (10.1) to illustrate its influence on the optimized

design. The influence of the material properties of anchor and host material are studied by varying

the ratio EA/EB. Finally, the optimized designs are compared for different interface conditions.

8.4.3.1 Nominal Problem Parameters

The optimization problem is solved for a response weight of cu = 10−4 and a perimeter

penalty weight of cp = 1/4. The volume constraint is omitted, i.e. cv = ∞. The stiffness ratio

between the anchor and host material is EA/EB = 1.

Figure 8.13 shows the evolution of the objective function and snapshots of material layout in

the course of the optimization process. The snapshots show contour plots of the von Mises stress

in the host and anchor; the interface between both materials is outlined in black. The cuboids of

the initial LSF quickly merge to form a single anchor domain. The contact interface evolves into a

barb-type shape maximizing the contact force. The holding force and perimeter of the initial and

final design are given in Table 8.4.

While the geometry is visually converged, the objective oscillates slightly. The behavior is

due to the stress approximation in the XFEM. In the presence of small intersections, the interface
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Holding Force (N) Perimeter (m)

Initial 0.9979 2.7987

Final 1.0766 3.0336

Table 8.4: Holding force and perimeter of initial and final design for nominal configuration.

stress is very sensitive to small variation in the interface geometry; see also Section 7.2. Alternative

formulation of the interface conditions that mitigate this issue will be explored in future studies.
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Figure 8.13: Evolution of objective function with select iterations visualized.

8.4.3.2 Influence of Perimeter Penalty

To investigate the influence of the perimeter penalty, the problem is solved for different

values of the perimeter penalty weight, cp. All other model parameters are set to the ones of the

nominal configuration. The resulting geometries are shown in Figure 8.14 and the performance of

the optimized designs is given in Table 8.5.

As the perimeter penalty is increased, the size of barb-type features are reduced and the

maximum holding force of the anchor decreases, see Figure 8.15. Note that the maximum holding
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Perimeter Holding Perimeter

Weight cp Force (N) (m)

3/4 1.0567 2.6039

1/2 1.0669 2.7918

1/4 1.0766 3.0336

1/5 1.0774 3.0458

1/10 1.0813 3.2608

0 1.0830 3.9574

Table 8.5: Holding force and perimeter of optimized designs for different perimeter penalty weights,
cp.

forces varies by less than 6% for the range of perimeter penalty weights considered here. This result

suggests that the impact of the perimeter penalty on the mechanical response is low. However, it

might be more pronounced for other problems.

Figure 8.14: Optimized designs for varying perimeter penalty weights.

8.4.3.3 Influence of Material Stiffness

In the nominal configuration, we assumed the same material for both phases. To explore

the dependency of the optimized design on the material properties of the individual phases, the

optimization problem is solved for two additional stiffness ratios. We consider the case where the

host material is softer than the anchor by assuming EA = 1/4 EB where EB is the nominal value,
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Figure 8.15: Effect of perimeter penalty on relative holding force of optimized designs; the reference
value is the holding force for cp = 0.0.

and the case of a soft anchor with EB = 1/16 EA where EA is the nominal value. In the latter

case, the weight of the response contribution to the objective is increased to cu = 1/EB = 16/EA

in order to compensate for an expected smaller holding force. All other model parameters are set

to the ones of the nominal configuration.

The optimized designs are shown in Figure 8.16 and their performance is reported in Table

8.6. Assuming sliding contact and separation, a stiff anchor embedded in a softer matrix material

exhibits a tapering profile with barbs or tines to maximize resistance to a pull-out loading. For

soft anchors embedded in a stiff host material, the formation of thin features and barbs is less

pronounced, but a centralized mass and a thin neck provide an increased resistance to separation.

To quantify the effectiveness of each design, the anchor design optimized for the soft casing

is analyzed assuming the stiff casing and vice versa. Table 8.7 shows the holding forces achieved by

the optimized designs considering different material stiffness ratios in the analysis. The geometry

optimized for a particular stiffness ratio yields an 9% to 22% increase in holding force when com-

pared to geometry optimized with the other stiffness ratio. These results illustrate the importance
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Holding Perimeter

Force (N) (m)

soft casing 0.9348 3.4340

soft anchor 0.0929 2.9527

Table 8.6: Holding force and perimeter for soft and stiff casing configurations.

of accounting for the material properties of the individual phases when optimizing the interface

geometry of contact problems.

Figure 8.16: Optimized designs for material ratios: (a) EA = 1
4E

B and (b) EB = 1
16E

A.

8.4.3.4 Influence of Interface Conditions

Finally, we study the influence of the interface condition on the optimal design. We compare

the results for a sliding contact model that allows for separation against designs optimized with

interface models that (a) assume perfect bonding and (b) allow sliding of the interface but prevent

separation. The latter model describes, for example, the behavior of lubricated interfaces where

the fluid allows sliding but not separation. To prevent separation, the contact model outlined in

Section 8.3 is used but the normal gap is enforced to be zero, irrespective of the sign of the contact

pressure λn.

Assuming a stiffness ratio of EA = 0.75 EB with EB being the nominal value, a volume

constraint is imposed with a weighting factor of cv = 1 to prevent the trivial solution in which the

anchor material ΩB occupies the entire design domain for interface conditions (a) and (b). Aside
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Analyzed with Optimized for

soft casing soft anchor

soft casing 0.9348 0.7324

soft anchor 0.0845 0.0929

Table 8.7: Holding forces (N) of optimized designs when analyzed with different stiffness ratios
between anchor and holding material.

from the above mentioned stiffness ratio, volume constraint, and varying interface conditions, all

other model parameters are consistent with that of the nominal configuration.

The optimized designs are shown in Figure 8.17. The anchor design strongly depends on the

interface model. To further illustrate the importance of accounting for the appropriate interface

conditions, we cross-compare the optimized designs assuming different interface models. The hold-

ing forces of the optimized designs are given in Table 8.8. For each interface condition, the geometry

optimized specifically for that interface condition provides the highest holding force under applied

displacements. These results suggest that designs optimized assuming a perfect bonding or sliding

contact without separation are of little use for applications which exhibit contact with separation.

While the design optimized for contact with separation performs well for the other interface models

in this example, this result cannot be generalized to other boundary conditions and combinations

of the materials with distinctly different properties.

Figure 8.17: Optimized design for (a) fixed, (b) sliding, and (c) separable interface conditions.
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Analyzed with Optimized with

Fixed Sliding Separable

Fixed 1.2658 1.2624 1.2605
Sliding 1.2395 1.2626 1.2447
Separable 0.0 0.7445 1.0177

Table 8.8: Holding forces (N) of optimized designs analyzed with different interface models.

8.4.4 Discussion

This study introduced a LSM-XFEM topology optimization method for optimizing the geom-

etry of interfaces of two elastic bodies. The method allows for optimizing the shape and topology

of the phase boundaries. An explicit LSM is used to describe the geometry by explicit function of

the optimization variables. The mechanical model assumes infinitesimal small strains and a linear

elastic behavior. The contact conditions are enforced via a stabilized Lagrange multiplier method

and an active set method. The XFEM is used to discretize the contact model and allows directly

integrating the weak form of the contact conditions at the interface. A broad range of measures

of the mechanical response can be considered in the formulation of the optimization problem. To

regularize the problem a penalty on the perimeter is introduced into the objective function and

a constraint on the volume ratio of the material phases is imposed. The optimization problem is

solved by a nonlinear programming algorithm, computing the design sensitivities by the adjoint

method.

The proposed optimization method was applied to a problem optimizing the location of four

bolts supporting an elastic plate. This example illustrated the use of geometric primitives where

only the location but not the shape of the primitives is optimized. The optimization method

showed a satisfactory convergence rate. Comparing the optimized bolt locations assuming sliding

contact and perfect bonding illustrated that the interface model may have a noticeable impact on

the design, even when the number of design variables is small and the design freedom is limited.

In the second problem the interface geometry of an anchor embedded in a host material was

optimized. The influences of the perimeter penalty, the stiffness ratio of the material phases, and

the interface model on the optimized design were studied. The formation of barb-type features
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was observed which increase the resistance of the anchor to external forces. In contrast to the bolt

problem, minor convergence issues were observed due to stress oscillations along the interface. This

issue is caused by the XFEM discretization of the stabilized Lagrange multiplier formulation of the

contact conditions. Alternative formulations of the contact conditions need to be studied, such as

the ghost penalty method of [17].

The study on the perimeter penalty showed that increasing the perimeter penalty reduces

the size of the barb-type features without significantly affecting the maximum holding force of the

anchor. The weak influence of the perimeter penalty on the mechanical response might be specific

to the numerical example considered in this study but also due to the small strain assumption.

The linear kinematic does not correctly capture the mechanical response if the local deformation

is comparable to the feature size. Therefore, the resistance of the barb-type features is likely over-

predicted. In future studies, finite strain models will be integrated in the proposed optimization

framework.

The studies on the influence of the material stiffness ratio and the interface model demon-

strated the significant impact of these physical parameters on the optimum design. These results

suggest that the material properties of the individual phases as well as the interface conditions

need be considered carefully when designing contact problems. Therefore, applying the proposed

optimization method to specific engineering problems seems to be a promising endeavor.

This chapter explored topology optimization for bilateral contact problems with an infinites-

imal strain assumption, small relative sliding, and frictionless interface conditions. In addition, the

scope of this chapter was limited to two-phase solid-solid problems.
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Small Strain Cohesive Interface Studies

This chapter investigates topology optimization of infinitesimal strain theory, small sliding,

cohesive bilateral contact problems in two and three dimensions. The material presented in this

chapter are condensed from the resulting publication[9].

9.1 Introduction

Material cohesion represents a progressive nonlinear behavior along the interface. This phe-

nomenon, which relates separation along the interface to surface traction, is also called the cohesive

zone model. The cohesive zone model is frequently used to describe material failure and interfacial

debonding in engineering structures. It was initially introduced by Dugdale [30] to analyze the dam-

age evolution and material failure within a localized region surrounding the tip of a crack. During

separation, the traction along the interface grows to a maximum value, then diminishes to zero.

Numerical modeling of structural problems with cohesive zone models have received considerable

attention, seminally introduced by Needleman [78]. Normal and tangential traction at the interface

can be represented as either independent or coupled functions of normal and tangential separation.

The constitutive relation between traction and separation has been described by exponential, bilin-

ear, and polynomial forms of cohesive zone laws [19, 102, 103, 115]. The standard bilinear cohesive

zone model is used often for the simulation of interfacial debonding, matrix cracking, delamination

of fiber reinforced composites [31, 60], and failure in functionally graded materials [121]. This work

considers an uncoupled, bilinear representation of the cohesive zone models. For more information
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about cohesive zone models, the reader is referred to [81].

Many cohesive zone laws rely on a penalty method to prevent surface penetration during

compression. To mitigate ill-conditioning and accuracy issues often caused by penalty formulations,

in this work a stabilized Lagrange method is adopted for the enforcement of non-penetration.

During the process of delamination, the mechanical model can experience instabilities. To mitigate

this issue, a dynamic relaxation method is employed for the evaluation of the structural response.

The interface geometry between two distinct material phases is described by an explicit LSM.

Unlike an implicit level set method, which typically describes the evolution of the level set field

in the optimization process by the Hamilton-Jacobi equation (e.g. [1]), explicit LSMs define the

discretized level set field as explicit functions of the optimization variables [110, 65, 82]. To retain

a sharp definition of the interface, we adopt the XFEM for predicting the mechanical response.

The particular framework for integrating the explicit LSM and the generalized formulation of the

XFEM used in this study are described in detail in [66] and [107].

Previously [59] applied the XFEM-LSM to topology optimization of structural problems

with bilateral, frictionless sliding contact. Initially applied to two dimensional frictionless contact

problems, it was subsequently extended to interface cohesion problems [57]. Liu et al. [63] recently

leveraged the XFEM-LSM framework to minimize the compliance of multi-material structures with

interface cohesion. Using adjoint sensitivities and the Hamilton-Jacobi equation to advance the

structural boundary, optimal solutions were achieved for two dimensional problems. The presented

method builds on the work of [57], extending it to the treatment of interface cohesion between two

materials in three dimensions.

The remainder of this chapter is organized as follows: in Section 9.2, we outline the formu-

lation of the optimization problems considered in this study. In Section 9.3, the mechanical model

of problems with cohesive interfaces is described. In Section 9.4, we study the main characteristics

of the proposed XFEM-LSM method with numerical examples. Insight gained from the numerical

studies and areas for future research are summarized in Section 9.5.
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Figure 9.1: Representative configuration of an optimization problem.

9.2 Optimization Problem

In this study, we consider the interactions between two phases, A and B, in two and three

dimensions. A representative configuration of the optimization problems relevant to this chapter

is shown in Figure 9.1. The design domain ΩD consists of two non-overlapping subdomains ΩA

and ΩB, such that ΩD = ΩA ∪ΩB and ΓAB = ΩA ∩ΩB is the interface between both subdomains.

Frictionless sliding or a cohesive interface behavior is modeled at the material interface ΓAB. Dis-

placements are prescribed at the boundary ΓBU while material A is fixed at the boundary ΓAU . In

the optimization examples presented in Section 9.4 we seek to maximize the reaction force at ΓAU .

To discourage the emergence of oscillatory shapes mimicking a rough surface, we introduce a

perimeter penalty term into the formulation of the objective function. This penalty term measures

the interface between domains ΩA and ΩB and is computed as follows:

P =

ˆ
ΓAB

dΓ . (9.1)

While a perimeter penalty does not allow explicit control of the local shape and the size of geometric

features, it has been reported effective in regularizing structural optimization problems [104]. For

additional reading on the use of perimeter measures for regularization, the reader is referred to

[68, 105, 59].

Geometric features that approach the length scale of element size can result in poor mechan-
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ical response predictions. To suppress the formation of such features, a constraint is imposed on

the integral measure, G, that is evaluated over the design domain as follows:

G =

ˆ
ΩD

e−α
2

(|∇φ| − 1)2 dΩ with α = ep
φ

∆φ
, ∆φ = φmax − φmin , (9.2)

where ep is the penalization parameter, and ∆φ is the range of allowable level-set values within

the design domain, with φmax and φmin denoting the upper and lower limits of the level set value,

respectively. The first term in (9.2) vanishes away from the zero level set isosurfaces, but is unity

in its vicinity. The second term encourages a signed distance-like level set field, i.e. |∇φ| = 1. The

combination of these two terms identifies level set gradients that do not match the desired value of 1

near the material interface. The use of the integral measure G for regularization is only successful in

discouraging sub-element features with appropriate upper and lower bounds of the level set values,

ideally φmax = h/2 and φmin = −h/2 where h corresponds to the element size. This approach was

used successfully towards the optimization of convective heat dissipation problems [22, 21], where

it was observed that the lower and upper bounds can be relaxed to ∓h to improve the convergence

of the optimization process. Regularization of the optimization problem by way of penalties is less

restrictive, as opposed to imposing additional constraint equations. Through numerical studies the

authors have found it easier to assign penalty values instead of constraint limits for regularization,

especially for cases in which the optimum geometry is largely unknown. For more information

about regularization of the optimization problem by way of constraints the reader is referred to

[22]. Finally, we constrain the ratio of volumes occupied by either solid, V A and V B, to exclude

trivial solutions.

The optimization problem is defined by the following nonlinear program:

min
s

(
cu
z0
z(u(s)) +

cp
P0
P (s) +

cg
G0

G(s)

)
s.t. V A(s)− cv V B(s) ≤ 0

s ∈ S =
{
RNs |smin ≤ si ≤ smax, i = 1....Ns

}
,

(9.3)

where z denotes the contribution of the mechanical response to the objective, cu is the associated

weighting factor, z0 is the initial mechanical response in objective, cp is the weight of the material
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Figure 9.2: Contact relations between two continuum bodies.

interface penalty, P0 is the initial measure of the material interface, cg is the weight of gradient

measure penalty, G0 is the initial gradient measure, and cv controls the desired volume ratio

between the two solids, respectively. The number of optimization variables is Ns; the lower and

upper bounds on the optimization variables are denoted by smin and smax, respectively. The

structural response, z(u(s)), depends on the discretized state variables, u, which are implicitly

dependent on design variables, s. While the proposed optimization framework allows considering

other objectives and constraints, such as strain energy, displacement and stress measures, the

formulations of the optimization problem used here are well suited to illustrate the influence of

mechanical interface conditions on optimized designs. The optimization problem (9.3) is solved by

a nonlinear programming method, and the design sensitivities are calculated by the adjoint method.

9.3 Physical Model

To describe the mechanical response at the interface between ΩA and ΩB, Figure 9.2 illus-

trates contact relations pertinent to the interface phenomena considered in this chapter. Here we

introduce superscript p to represent either of phases A and B. Surface quantities Tp, np, and tp

are the traction, normal vector, and tangential vector for phase p, respectively. We define uBA as
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the displacement jump across the interface. The mechanical response at the interface depends on

the traction and relative displacement across the interface. For any given point on the interface,

the normal and tangential traction and separations are defined as:

∆n = uBA · nA, ∆t = uBA · tA, nA = −nB, tA = −tB ,

T̃n = TA · nA = −TB · nA, T̃t = TA · tA = −TB · tA ,

(9.4)

where ∆n is the normal separation, ∆t is the tangential separation, T̃n is the magnitude of normal

traction, and T̃t is the magnitude of tangential traction. The relationship between surface traction

and relative displacement are illustrated in Figure 9.3. The variables δnc , δtc, δ
n
f , and δtf represent the

critical normal separation, the critical tangential separation, the normal separation at which the

normal traction vanishes, and the tangential separation at which the tangential traction vanishes,

respectively. In our uncoupled bilinear cohesive zone law three distinct regions are defined. The

bonded zone refers to the linear elastic region where ∆n ≤ δnc and ∆t ≤ δtc. The reduced zone is

defined as the region where δnc ≤ ∆n ≤ δnf and δtc ≤ ∆t ≤ δtf . Finally, the debonded zone refers to

the region in which cohesion has vanished, i.e. ∆n ≥ δnf and ∆t ≥ δtf .

δc
𝑛

σmax

δf
𝑛 ∆𝑛 δc

𝑡

τmax

δf
𝑡 ∆𝑡

δc
𝑡
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𝜆 < 0
Δ𝑛 < 0

Figure 9.3: Uncoupled bilinear cohesive zone law, (a) normal response, (b) tangential response.

Departing from the frequently used penalty method to prevent surface penetration, the com-

pressive region depicted in the lower left quadrant of Figure 9.3(a) is handled separately by a

stabilized Lagrange formulation. This mitigates ill-conditioning and accuracy issues that can arise

with the use of penalty methods. During separation, the magnitude of normal and shear traction
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at the interface increases linearly to a prescribed maximum value, then falls to zero when separa-

tion has surpassed the cohesion limit. The governing equations for bilinear cohesion are defined as

follows:

T̃n(∆n, λ) =



λ if λ ≤ 0

σmax
δnc

∆n if 0 ≤ ∆n ≤ δnc

σmax(δnf −∆n)
δnf −δnc

if δnc < ∆n ≤ δnf

0 if ∆n > δnf

, (9.5)

and

T̃t(∆t) =



τmax
δtc

∆t if − δtc ≤ ∆t ≤ δtc

τmax(δtf−∆t)

δtf−δtc
if δtc < ∆t ≤ δtf

− τmax(δtf−∆t)

δtf−δtc
if − δtf ≤ ∆t < −δtc

0 if |∆t| > δtf

, (9.6)

where σmax is the value of normal traction at the critical normal separation, δnc ; τmax is the tangential

traction at the critical tangential separation, δtc; λ is the Lagrange multiplier associated with

the non-penetration condition. The constraint equation associated with the stabilized Lagrange

multiplier is evaluated as follows:

λ− T̄ · nA − γ∆n = 0 , (9.7)

with

T̄ = σ̄ · nA, σ̄ = ωAσA + ωBσB , (9.8)

where γ is a penalty factor. The penalty factor discourages penetration during the early stages of

convergence but becomes insignificant as equilibrium is achieved and the relative normal separation

goes to zero, i.e. ∆n ≈ 0. The weighting factors, ωp, are such that ωA + ωB = 1; in this work we

assume that ωA = ωB = 0.5.
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9.4 Numerical Examples

In this section, we first verify the accuracy of the implemented cohesive zone model for

different modes of delamination through comparison against analytical reference solutions. To

gain insight into the effectiveness and robustness of the optimization framework, both 2D and 3D

optimization problems are considered. We study the influence of cohesive interface parameters on

the optimized design through numerical examples. The effect of the gradient measure penalty on

optimal performance is evaluated, and the impact of surface debonding on the optimized geometry

is assessed by varying the magnitude of the applied loads.

The optimization problems are solved by the Globally Convergent Method of Moving Asymp-

totes (GCMMA) [96]. The optimization problem is considered converged if the change of the objec-

tive function relative to the initial objective value is less than 10−6 and the constraints are satisfied.

The parameters controlling the adaptation of the lower and upper asymptotes are set to 0.5, 0.7,

and 1.2, respectively. The relative step size, ∆s, is provided for each example. The GCMMA con-

straint penalty is set to 50. For all optimization examples provided in this chapter, the upper and

lower limits for the optimization variables are set to smax = h and smin = −h, where h represents

the length of the elements. For the sensitivity analysis we adopt a discrete formulation similar

to that used by [21], which can be readily evaluated from the governing equations of the design

problem. The partial derivatives of the objective function, the constraint, and the element residual

with respect to the design variables are evaluated by a finite difference method. The linearized

sub-problems within the Newton iterations and the adjoint sensitivity analysis are solved using the

UMFPACK direct solver [24] for the 2D examples and a Generalized Minimal RESidual (GMRES)

iterative solver with incomplete LU factorization [84] for the 3D examples.

9.4.1 Verification of cohesive zone model

The accuracy of the XFEM formulation of the cohesive zone model discussed above is val-

idated through comparison against the analytical solution for mode I of delamination. For this
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purpose, a double cantilever beam (DCB) is studied. The schematic of the DCB geometry is il-

lustrated in Figure 9.4. Using linear elastic beam theory [3], the analytical solution for the crack

length can be described as a function of cohesive fracture energy. The crack length is given by [93]

as:

a = 4

√
3EH3∆2

4Gc
, (9.9)

where E is the Young’s modulus, ∆ is the separation at the end, H is the beam height, and

Gc is the cohesive fracture energy. We adapted the model parameters and problem configuration

given by [93], provided in Table 9.1. For numerical modeling, the beam is discretized with 330×33

bilinear quadrilateral elements and the forward analysis is solved with a 2D plane strain condition.

The measured crack length, a, is plotted as a function of end displacement, ∆, and compared to

the analytical solution in Figure 9.5. The inset snapshots depict the initial and final deformed

configuration of the DCB, with an expanded view of the mesh used. For visualization purposes,

intersected elements are decomposed into triangles. Despite the influence of the fixed edge boundary

condition, the measured relative error between two solutions is approximately 1%. This error is

caused by unstable crack growth near the fixed edge of the beam, similarly observed by [3, 93].

𝑎
2∆

𝐻

𝐿
𝑃

𝑃

Cohesive interface

y

x

Figure 9.4: Schematic of double cantilever beam.

Description Parameter Value Units

beam length L 200 mm
beam height H 10 mm

Young’s modulus E 14.2 GPa
Poisson’s ratio ν 0.35
fraction energy Gc 344 J/m2

material strength σmax 3.56 MPa
penalty factor γ 20

Table 9.1: Model parameters of double cantilever
beam.

In addition to mode I verification, the structural response during mixed mode uniform de-

lamination is verified by an analytical solution. A rectangular block with a horizontal cohesive

interface is fixed along the bottom edge and subjected to a uniform displacement along the top

edge. The schematic of the problem and the boundary conditions are shown in Figure 9.6. The
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Figure 9.5: Comparison between analytical and numerical solutions for double cantilever beam.
For visualization purpose, the displacement in the deformed configuration is shown with a scaling
factor 10.

𝑈𝑟

Cohesive interface

45°

y

x

𝐿

𝐻

Figure 9.6: Loading and boundary conditions for laminated structure with cohesive interface.

material and cohesive zone model parameters for the mixed mode delamination model are given

in Table 9.2. For any given uniform surface separation value, the analytical solution for the total

delamination force is:

f =

ˆ
Γc

(
T 2
n + T 2

t

)1/2
dΓ ≈

(
T 2
n + T 2

t

)1/2 ×H × t , (9.10)

where f is the total force for uniform delamination along the cohesive interface Γc. For numerical
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Description Parameter Value Units

beam length L 10 mm
beam height H 0.1 mm
beam thickness t 0.1 mm
applied displacement Ur 0.15 mm
Young’s modulus E 2.0 GPa
Poisson’s ratio ν 0.3
maximum normal traction σmax 1.0 MPa
maximum tangential traction τmax 3.0 MPa
ultimate normal separation δnf 0.06 mm
ultimate tangential separation δtf 0.033 mm
critical normal separation δnc 0.006 mm
critical tangential separation δtc 0.0033 mm
penalty factor γ 20

Table 9.2: Material and cohesive zone parameters for mixed mode model.

modeling, the domain is discretized with 100×1 elements and the simulation is performed for 2D

plane strain conditions. Since only the response at the interface is of interest, a single layer of

elements in thickness direction is sufficient. A uniform displacement is applied with a magnitude

of 0.15 mm in sequence of load increments. Figure 9.7 compares numerical and analytical results

for the total delamination force as a function of the magnitude of separation between the surfaces.

The inset snapshots illustrate the mechanical response of a segment of the laminated structure at

specific loading stages, with the intersected elements decomposed into triangles for visualization

purposes. The measured relative error in the uniform mixed mode example problem is 2.25× 10−7

%.

9.4.2 Material anchor - 2D

To explore the characteristics of the proposed optimization method, we first introduce the

2D material anchor design problem shown in Figure 9.8. A structural anchor (represented by phase

A) is embedded in a host material (designated as phase B) with frictionless and cohesive interface

conditions, imposed at the boundary between both phases. In this problem, we wish to determine

the optimal geometry such that the holding force of the anchor is maximized. Originally studied

for frictionless contact by [59], this problem is extended to account for cohesion at the interface.
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Figure 9.7: Force-separation curves for the analytical and numerical solutions.

The latticed initial configuration widens the prevalence of design sensitivities throughout the design

domain, encouraging rapid convergence to an optimized geometry.

The anchor is fixed along the boundary Γ1, and a prescribed displacement, UBx , is applied to

the host material along Γ2−4. Displacements in the y direction are constrained to zero along Γ2−4.

To exclude the trivial case in which the anchor material directly connects boundary Γ1 to boundaries

Γ2−4, these boundaries are excluded from the design domain. Considering the symmetric nature of

the problem, only one half of the design domain is analyzed. The response dependent contribution

to the objective function in Equation (9.3) is defined through the holding force of the anchor in the

x direction along Γ1. The holding force is measured by integrating the normal stress σxx along Γ1.

This contribution to the objective function is defined as follows:

z = −
ˆ

Γ1

σxx dΓ . (9.11)

The optimization problem is regularized by applying a perimeter penalty and the level set gradient

measure penalty along the interface. In order to ensure that the anchor material geometry does

not occupy the entire design domain geometry, a volume constraint of 50% is imposed.
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Figure 9.8: Initial design of the material anchor
problem.

Description Parameter

length of domain L1 = 1.0 m
length of anchor head L2 = 0.715 m
length of anchor width L3 = 0.523 m
anchor base width L4 = 0.20 m
anchor distance from end L5 = 0.175 m
inclusion width L6 = 0.0833 m
inclusion width L7 = 0.0667 m
fixed section width L8 = 0.0333 m
thickness t = 1/13 m
applied displacement UBx = var.
Young’s modulus EA = 104N/m2

Young’s modulus EB = 104N/m2

Poisson’s ratio νA = 0.3
Poisson’s ratio νB = 0.3
spring stiffness K = 2.0× 103N/m2

response weight cu = 5.0× EA
perimeter weight cp = 0.25
volume constraint weight cv = 0.5
gradient measure weight cg = var.
penalization parameter ep = 1.0
desired level set gradient dφp = 1.0
penalty factor γ = 20

initial damping parameter β̃int = 0.01
GCMMA step size ∆s = 3.0× 10−5

Table 9.3: Nominal parameters for the material an-
chor design problem.

Half of the design domain is discretized with 120×60 elements and the physical response is

predicted assuming plane strain conditions. To mitigate mechanical response convergence issues due

to material inclusions undergoing rigid body rotations, the host material is grounded elastically by

a distributed system of weak linear springs with stiffness K. The LSF is discretized by the XFEM

mesh and the nodal level set values are defined as the optimization variables. The LSF is initialized

by an array of cuboids as shown in Figure 9.8. The smoothing radius of the linear filter in (2.9) is

0.0375m.

The effect of the perimeter penalty on optimized designs for frictionless contact was studied

in [59]. The results showed that the perimeter penalty reduces the number and size of barbs,

however it does not result in a large depreciation of the holding force. In this work, we study the



www.manaraa.com

96

effectiveness of constraining the level set gradient measure to regularize the optimization problem

and consider different values of the weighting factor cg in Equation (9.3). The influence of the

interface conditions and the cohesive zone parameters on the optimized design are studied by

varying the normal and tangential interface resistance. An example designed to initially exhibit

total debonding is optimized to recover interface cohesion. Finally, the influences of the applied

load are investigated through the variation of the applied displacement magnitude.

9.4.2.1 Nominal design

We first illustrate the geometry evolution and convergence behavior of the nominal design.

Design parameters are consistent with those given in Table 9.3, and we exclude the influence of

the level set gradient measure by setting cg = 0.0. The nominal model assumes frictionless sliding

contact, excluding material cohesion, and the applied displacement is set to UBx = 0.025m. The

evolution of the nominal design is shown in Figure 9.9. During the optimization process, the anchor

material coalesces into a unified body. Interlocking tabs at the anchor head and barbs along the

sides afford resistance to separation. The initial and optimized values for the holding force and the

interface length are given in Table 9.4. While the general design traits are similar to that of [59],

the increase of prescribed displacements in this study produces interlocking tabs at the head of the

anchor.

Design iteration Holding force (N) Interface length (m)

Initial 1.1432 3.86387

Optimized 1.8835 1.36123

Table 9.4: Holding force and interface length in the initial and optimized designs for nominal
configuration.

9.4.2.2 Influence of gradient measure penalty

Optimization problems involving sliding contact can lead to the formation of extremely sharp

protrusions or periodic surface oscillations to maximize the resistance to surface separation. These

small features can lead to poor mechanical response predictions when they approach the length
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Figure 9.9: Objective evolution and convergence behavior of the nominal design.

scale of an element. Additionally, small features can be problematic for manufacturing. The

level set gradient measure penalty helps to regularize the problem by discouraging small features.

However, this form of regularization may lessen the formation of barbs along the side and separation

resistant features if it is overemphasized in the objective function. To explore the impact of gradient

measure regularization, the nominal design is solved for different values of the gradient measure

penalty weight, cg. The applied load is increased to UBx = 0.05m to amplify optimized geometry

features, while all other model parameters and boundary conditions are the same as defined for the

nominal design.
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With an initial penalty weight of cg = 0.0, the optimized geometry and subsequent holding

force provide a reference value free of gradient measure regularization. The penalty weight is then

increased incrementally to cg = 1.0, and the percentage of the reduction in holding force is evaluated

by comparison to the optimized design with no gradient measure penalty. The optimization results

are given in Figure 9.10 and Table 9.5. The gradient measure regularization reduces the prevalence

of small features at a minimal cost to the resulting holding force. For the remaining 2D examples

provided in this chapter, a gradient measure penalty of cg = 0.01 is used. Although contributions to

the objective function are normalized by the initial response, it is not guaranteed that the optimal

gradient measure penalty weight value is constant for all optimization problems considered in this

chapter. However, in the author’s experience, a gradient measure penalty weight of cg = 0.01

reduces the prevalence of small features without altering general optimized design characteristics

for problems presented in this chapter.

cg = 0.0 cg = 0.0001 cg = 0.001

cg = 0.01 cg = 0.1 cg = 1.0

Figure 9.10: Effect of gradient measure penalty on the optimized design.
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Gradient measure Holding force Reduction in Interface

penalty cg (N) holding force (%) length (m)

0.0 4.0827 0.0 1.3885

0.0001 4.0830 0.009 1.4244

0.001 4.0728 0.242 1.2857

0.01 4.0739 0.216 1.2861

0.1 4.0806 0.052 1.2859

1.0 4.0805 0.053 1.4553

Table 9.5: Holding force, reduction in holding force and the interface length of the optimized design
for different gradient measure penalty weights, cg.

9.4.2.3 Influence of interface conditions

While optimized geometries for frictionless contact are somewhat intuitive, additional inter-

face phenomena, such as cohesion and debonding, complicate design considerations. The optimized

anchor design in the presence of cohesive interface conditions is investigated by varying the normal

and tangential resistance at the interface. While the critical and final separation cohesion param-

eters are kept constant, δnc = δtc = 0.007m, δnf = δtf = 0.2m, the optimization problem is solved

for different values of maximum normal and tangential traction, σmax and τmax. To provide an

intuitive metric for the normal and tangential resistance experienced at the interface, we define the

effective normal and shear cohesion modulus as follows:

EN =
σmax
δnc

, ET =
τmax
δtc

, (9.12)

where EN is the effective normal cohesion modulus and ET is the effective shear cohesion modulus.

Figure 9.11 illustrates optimized geometries for various normal and shear cohesion moduli values

normalized by the anchor material Young’s modulus (EA). As the tangential cohesion modulus is

increased, the contact interface aligns with the direction of the applied displacement to maximize

resistance. In the case of a large normal cohesion modulus, the trailing edges of barbs or tines

flatten out to provide resistance to normal separation. For a design involving large shear and

normal cohesion, analogous to perfect bonding at the interface, a reduction of surface features

and consolidated anchor mass are observed. This design trend has also been observed by [59] for
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the case of perfect bonding and separable interface. For all examples with cohesion presented in

Figure 9.11, interface cohesion remains in the bonded zone; see Figure 9.3.

0 1 10

0

1

10

Normalized tangential modulus
𝐸𝑇

𝐸𝐴

Figure 9.11: Influence of interface conditions on the optimized design, UBx = 0.025m.

9.4.2.4 Optimization of problems experiencing debonding

In the numerical studies above, the initial anchor geometry provides significant interface re-

sistance. During the evolution of the anchor geometry, features quickly emerged to further increase

the surface traction. This section considers the case where the optimization process is initialized

with a design that experiences complete delamination. To this end, the optimized geometry for

the highest pure tangential cohesion case, EN/EA = 0.0 and ET /EA = 10.0 from Figure 9.11, is

chosen as the initial configuration. The final separation parameters are set to δnf = δtf = 0.014m,

the maximum tangential traction parameter to τmax = 140N/m2 and the applied displacement to

UBx = 0.1m. All other material parameters remain the same as the nominal design.

The objective history during optimization, supported by snapshots of the physical response

and force-displacement curves for select iterations, are shown in Figure 9.12. During the ini-
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tial stages of design evolution, full debonding occurs when the applied displacement surpasses

0.05m. This behavior is evident by the sudden drop in holding force at the applied displacement

of UBx ≈ 0.05m, shown in the inset of Figure 9.12. Within the first ten design iterations total

debonding is mitigated. After optimization, the entirety of the material interface remains in the

bonded zone of cohesion at the maximum applied displacement, as demonstrated by the linear

force-displacement curve. Similar to the frictionless nominal design, the geometry produces barbs

along the sides that provide resistance to the separation. This example also demonstrates that

dynamic relaxation provides a reliable evaluation of the mechanical response experiencing rapid

delamination, throughout design iterations.

9.4.2.5 Influence of applied load

In the previous example, complete debonding of the initial design was induced by selecting the

initial geometry, load conditions, and interface properties favorable to such a response. To further

investigate design traits associated with reduced cohesion, in this study we focus our attention on

the influence of the magnitude of the applied displacement on the optimized geometry. Beginning

with the optimized design and model parameters for the tangential resistance case EN/EA = 0.0

and ET /EA = 1.0 shown in Figure 9.11, the applied displacement is incrementally raised to match

the final separation cohesion parameter, i.e. UBx = δt
f = 0.2m. The optimization problem is solved

at each load level using the initial design shown in Figure 9.8. The evolution of the optimized

design as the applied displacement increases is shown in Figure 9.13.

For small displacements, the optimized design exhibits an interface that is predominantly

aligned with the direction of applied load to afford cohesive resistance to separation. As the

applied displacement increases, cohesion diminishes gradually in localized regions. The physical

response in these regions is dominated by sliding contact interactions. At the highest loading case

of UBx = 0.2m, the majority of interfacial separation is greater than the critical separation value.

With a reduced influence of cohesion, the optimized design for the maximum load scenario shows

a close resemblance to the nominal design without cohesion.



www.manaraa.com

102

21.5

22

22.5

23

23.5

24

24.5

25

25.5

0 50 100 150 200 250 300

O
b

je
ct

iv
e 

V
al

u
e

Design Iteration

Initial Iteration - 7 Iteration - 270

Figure 9.12: Evolution of design and load-displacement curve during optimization.

The highest loading level, i.e. UBx = 0.2m, is applied to the material interface configurations

studied in Section 9.4.2.3, and the resulting optimized geometries are illustrated in Figure 9.14.

The percentage of the interface which resides in the reduced zone of cohesion is provided above

each case. Comparison between Figures 9.11 and 9.14 shows that under the maximum loading
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𝑈𝑥
𝐵 = 0.025 𝑚 𝑈𝑥

𝐵 = 0.05 𝑚 𝑈𝑥
𝐵 = 0.1 𝑚 𝑈𝑥

𝐵 = 0.2 𝑚

0.0% reduced zone 0.0% reduced zone 8.0% reduced zone 79.0% reduced zone

Figure 9.13: Influence of applied load on the optimized design, ET /EA = 1.0.

condition, there is a general trend towards the development of barbs or interlocking features to

prevent separation. For this load case scenario, the benefit of such features outweighs the cost of

the interface measure penalty. However, design problems in which the entire interface remains in

the bonded zone of cohesion (Figure 9.3) remain relatively unchanged. The holding forces of each

design illustrated in Figures 9.11 and 9.14 are provided in a Table 9.6. Increasing the interface

resistance in both normal and tangential directions results in higher holding forces.
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4.3% reduced zone

64% reduced zone 52% reduced zone
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0.0% reduced zone
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Figure 9.14: Influence of extreme loading condition on the optimized design, UBx = 0.2m.
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To provide further insight to optimized design traits which may leverage material cohesion to

increase holding force, the relative gap value and cohesive traction at the interface are illustrated

for the two design cases experiencing the highest percentage of reduced cohesion. For the case of

pure tangential cohesion, ET /EA = 1, EN/EA = 0, the tangential separation and traction at the

interface are depicted in Figure 9.15. The tangential separation between the anchor and host mate-

rial is less pronounced in the vicinity of the interlocking tabs at the head of the anchor, but exceeds

the critical separation value along the sides of the anchor which are aligned with the direction of

applied load. The state of surface traction at the interface suggests that interlocking tabs or barbs

provide a greater advantage in localized regions experiencing minimal cohesive traction. While the

interface geometry along the side of the anchor shows a slight decrease in barb size, the general

profile closely resembles the optimized geometry without interface cohesion.

For the case of pure normal cohesion, ET /EA = 0, EN/EA = 1, the normal separation and

traction are illustrated in Figure 9.16. The normal surface separation is most prominent along

the trailing edge of the majority of barb-like features, and at the head of the anchor. The normal

surface traction at the interface suggests that the smooth anchor head profile leverages cohesive

resistance to increase the holding force of the design.

The studies performed on the 2D material anchor design problem demonstrate that the pro-

posed optimization framework is sufficient to solve a broad range of problems, including those

exhibiting complete debonding. Interfacial properties have shown to be a dominant design con-

Interface condition Holding force (N) Holding force (N)

(ET /EA, EN/EA) UBx = 0.025m UBx = 0.2m

(0,0) 1.9814 16.3305

(1,0) 2.0598 16.5288

(10,0) 2.2429 17.9635

(0,1) 2.0856 15.8748

(0,10) 2.2135 17.7353

(1,1) 2.1344 16.9302

(10,10) 2.2491 17.9866

Table 9.6: Holding forces of each design illustrated in Figures 9.11 and 9.14.
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Figure 9.15: Interface separation and traction for case study: ET /EA = 1, EN/EA = 0.

Figure 9.16: Interface separation and traction for case study: ET /EA = 0, EN/EA = 1.

sideration for material anchors. The study on varying the magnitude of the applied load showed

that design characteristics can be tailored in localized regions where either cohesion or frictionless

contact are prevalent.

9.4.3 Material anchor - 3D

The following examples extend the design domain to study three dimensional problems. The

design domain of the 2D example in Figure 9.8 is repeated in the out-of-plane direction. The

schematic of the 3D model initial configuration is shown in Figure 9.17. All material parameters

and interface conditions are adopted from 2D example; see Table 9.3.
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Figure 9.17: Schematic of the initial design in 3D anchor problem.

Similar to the 2D example, the objective is to maximize the holding force of the anchor. Line

boundary Γ1 is extended to a surface boundary where the 3D anchor exits the design domain. Line

boundaries Γ2 and Γ4 are extended to the x− y and x− z planes at the design domain boundaries.

Finally, line boundary Γ3 is extended to a surface boundary at the x = 0 plane. Considering

the symmetric nature of the problem, only one fourth of the domain is analyzed with 60×30×30

elements. The optimization step size is set to ∆s = 0.001. Similar to the 2D example, the response

dependent contribution to the objective function in Equation (9.3) is defined through the holding

force of the anchor in the x direction along Γ1. The holding force is measured by integrating

the normal stress σxx along Γ1 (9.11). The optimization problem is regularized by applying a

perimeter penalty and gradient measure penalty for the level set field along the interface. The

response, perimeter, and volume constraint weights are the same as provided in Table 9.3, whereas

the gradient measure weight is kept consistent with the 2D analog for each study. Specifically, the

gradient measure weight is set to cg = 0.0 for the nominal design and cg = 0.01 for the remaining

3D examples.

We first illustrate the geometric evolution and convergence behavior of the nominal design.

In all 3D examples, the applied displacement is set to UBx = 0.007m; higher loads resulted in

numerical instabilities from complex geometric features. The evolution of the nominal design is
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shown in Figure 9.18. Similar to the 2D problem, the anchor material evolves into a unified body.

Ridges or spines along the outer face of the anchor provide resistance to separation.
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Figure 9.18: Objective evolution for 3D nominal design.

9.4.3.1 Influence of interface conditions

The 3D effects of interface cohesion on the optimized design are investigated for different

levels of normal and tangential cohesive resistance. All cases of interfacial properties investigated

in Section 9.4.2.3 are studied here for the three dimensional configuration. The resulting geometries

for these sets of interface parameters are shown in Figure 9.19. For comparison, a cutaway view is

provided in Figure 9.20.
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Although 2D and 3D examples show design trend similarities, the 3D optimized geometries

exhibit traits that cannot be fully represented in two dimensions. The relative size and placement

of barbs in the x direction along the outer surface varies radially, which cannot be deduced from

2D examples. The non-uniform radial profile is likely a result of the square shaped design domain.

The plain strain assumption used in 2D examples determines the physical response appropriate for

an extruded 3D domain. Due to the cylindrical nature of the optimized geometry in 3D examples,

the relative size of barbs is not directly comparable. For all 3D examples presented, the entirety of

the interface remained in the bonded zone of cohesion. Note that the reduction of barbs size in the

3D examples when compared to 2D cases could be a result of the reduced applied load. However,

these examples suggest that concluding 3D geometries from a 2D analysis may not be adequate

depending on the intended application.

9.5 Discussion

This chapter presented a topology optimization framework for two-phase materials with co-

hesive interface phenomena. The interface condition is described by a bilinear cohesive zone model.

To prevent surface penetration and to provide more accurate solution of the finite element analysis,

the constitutive cohesive zone model is augmented by a stabilized Lagrange multiplier formulation.

The material behavior of the mechanical model is described by linear elastic isotropic material and

infinitesimal strains are assumed for the mechanical deformation. The XFEM is used to discretize

and integrate the governing equations. To remedy the convergence difficulties for large separation

and post delamination, an adaptive dynamic relaxation method is adopted for computing the static

response.

An explicit LSM is used to describe the interface geometry between two distinct material

phases. The LSF is defined by explicit functions of the optimization variables. The optimization

problem is solved with a nonlinear programming method. The optimization problems studied in

this chapter consider the mechanical response and penalty terms on the material interface surface

area and a level set gradient measure to suppress sub-element geometric features. A constraint on
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Figure 9.19: 3D view of the influence of interface conditions on the optimized design, UBx = 0.007m.

the volume ratio of the material phase is imposed. The design sensitivities are evaluated by the

adjoint method.

The presented optimization framework proved reliable for a variety of 2D and 3D examples,

optimizing the topology of a material anchor by maximizing the holding force. Perimeter measure

regularization was employed, as it was shown in previous studies [59] to be effective in reducing

the number and size of geometric features at a minimal cost to design performance. Gradient
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Figure 9.20: Inclined cross section view of the influence of interface conditions on the optimized
design, UBx = 0.007m.

measure regularization was shown to be successful at removing small features that are problematic

for accurate response prediction and for manufacturing considerations at a minimal cost to design

performance. A volume constraint was imposed to prevent optimal geometries from being influenced

by the outer design domain boundaries. Future studies on the effects of varied volume constraints

should be explored. The interface conditions were shown to have a strong influence on optimized
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geometry, as various levels of normal and tangential resistance yielded drastically different designs.

An initial design experiencing total debonding was optimized to recover interface cohesion and a

monotonic resistance to separation. The applied load study demonstrated that geometry can be

tailored to localized regions where either cohesion or delamination are present. A three dimensional

example revealed design traits that could not deduced from 2D studies, such as circumferential barb

size and placement.

While only bilinear cohesion and frictionless contact were considered in this chapter, the

developed method allows for the convenient extension of the framework for different interface con-

stitutive relations. The applied load in three dimensional studies was reduced, as convergence

difficulties in the mechanical model were encountered at higher loads.
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Chapter 10

Large Sliding Frictionless Interface Studies

This chapter investigates topology optimization of finite strain theory, large sliding, fric-

tionless bilateral contact problems in two dimensions. The material presented in this chapter are

condensed from the resulting publication[58].

10.1 Introduction

Sliding contact phenomena between deformable structures play a crucial role in the function-

ality of many mechanical systems in commercial and industrial applications. Whether the desired

functionality is to re-direct motion, provide a mechanical advantage, improve traction, or regulate

stored energy, the performance of such systems is highly sensitive to interface geometry. Computa-

tional design optimization is well suited for these types of problems, as ideal design solutions can

be non-intuitive. This chapter provides a shape and topology optimization method for problems

involving large sliding, large deformation, frictionless contact and separation in two dimensions.

While interfacial adhesion and friction are ignored in this chapter, the proposed framework allows

for the inclusion of additional contact phenomena. As previously discussed, design optimization

methods for contact related problems can be categorized by the type of geometry changes allowed

during optimization (Figure 2.3). This chapter studies option (d) for two-phase problems, and a

combination of options (b) and (c) for three-phase problems.

Analogous to Figure 2.3d, topology changes have been afforded through density methods in

small strain [4, 94] and large strain [64], excluding the contact surface from geometry control. This,
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however, severely restricts the optimal design solution space, as the functionality is often strongly

correlated to the interface geometry. The optimization of unilateral contact surface geometries

(similar to Fig. 2.3b) have been achieved with LSM for small strain theory problems; see for example

[74]. Topology optimization including the material interface geometry has been achieved in a few

small strain theory studies, namely for frictionless two-phase problems [59] and cohesive interface

phenomena of multi-phase problems [63]. These two studies analyzed two dimensional problems and

are comparable to option (d) and a combination of options (c) and (d) from Figure 2.3, respectively.

In addition to the contact nonlinearities explored in Chapter 8, this chapter introduces large relative

motion between components and large deformation of materials. Coincident surface location here is

deformation dependent, complicating the solution of the physical response and evaluation of design

sensitivities. These complexities pose interesting challenges for shape and topology optimization.

Previous studies of optimization in which the contact interface is altered rely on either small

strain kinematics or unilateral contact to reduce the complexity of sliding contact behavior. In

this chapter we expand the methods presented in [59] to the shape and topology optimization of

bilateral contact problems with finite strain kinematics and large sliding contact. This marks a

significant extension to the limits of accurate physical response prediction, which in turn grants

access to a much broader scope of engineering problems.

The XFEM has been leveraged to analyze problems in which relative sliding is significant.

Large sliding bilateral contact behavior was considered using an augmented Lagrange method and

surface-to-surface (STS) integration in small strain [89] and hybrid elements in large strain theory

[79]. In large strain theory, penalty methods have proven successful for unilateral contact problems

[15] and bilateral contact problems with node-to-surface (NTS) integration [98]. In this chapter we

adopt a large strain theory stabilized Lagrange multiplier method similar to the approach of [79].

However, instead of using hybrid elements, contact equilibrium is enforced weakly through STS

integration at the immersed boundary.

The remainder of this chapter is organized as follows: in Section 10.2, we outline the for-

mulation of the optimization problems considered in this study. In Section 10.3, the mechanical
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Figure 10.1: Representative configurations of optimization problems pertinent to this study.

model of the contact problem is described. In Section 10.4, the surface parametrisation scheme is

outlined. In Section 10.5, we study the main characteristics of the proposed LSM-XFEM method

with numerical examples. Insight gained from the numerical studies and areas for future research

are summarized in Section 10.6.

10.2 Optimization Problem

In this chapter we consider the interactions between two solid phases, A and B, with sliding,

separable contact at the phase boundaries. For select optimization problems, a void phase, V,

is introduced within solid phase B. The optimization problems presented in this chapter can be

illustrated by the representative configurations provided in Figure 10.1. The design domain ΩD is

composed by three non-overlapping subdomains, ΩA, ΩB, and ΩV such that ΩD = ΩA ∪ΩB ∪ΩV .

The contact interface ΓC resides between the two solid phases such that ΓC = ΩA ∩ ΩB. The

boundary between phase B and the void phase is denoted by Γv = ΩB ∩ ΩV . To reduce interface

complexities, such as triple junctions, the void subdomain, ΩV , resides within ΩB such that ΩV ∩

ΩA = 0. The approach for restricting the void phase to reside within phase B is discussed in Section

2.4.2.

While the proposed optimization method is applicable to a broad range of problems, we

focus in this chapter on two representative types of problems depicted in Figure 10.1 and studied in

Section 10.5. The examples presented in Sections 10.5.4 and 10.5.5 are analogous to Figure 10.1(a),
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wherein the displacements in phase B are prescribed along the boundary ΓBU and displacement

controlled loading is applied at the boundary ΓAU . We seek to minimize an objective function

related to the reaction load at ΓBU . The examples presented in Section 10.5.6 are analogous to

Figure 10.1(b), wherein the displacements in phase A are prescribed along the boundary ΓAU and

displacement controlled loading is applied within a subset of the domain occupied by phase B, ΩB
U .

For problems considered here, the objective is to minimize some function related to the reaction

load at boundary ΓAU .

The design problems of interest are defined by the following nonlinear program:

min
s
q (s) ,

s.t.
V B(s)

V B(s) + V A(s)
− cv ≤ 0

s ∈ S =
{
RNs |smin ≤ si ≤ smax, i = 1....Ns

}
,

(10.1)

where q denotes the scalar objective, s is the vector of optimization variables, and the number of

optimization variables is Ns; the lower and upper bounds on the optimization variables are denoted

by smin and smax, respectively. For the scope of optimization problems studied in this chapter, the

objective function, q, is defined as:

q (s) = cu
z (s, û(s))

z0
+ cp

P (s)

P0
(10.2)

where z denotes the contribution of the mechanical response to the objective, cu is the associated

weighting factor, P is a measure of the perimeter, and cp is the associated weighting factor. Both the

contribution of the mechanical response and the perimeter measure are normalized by their initial

value, z0 and P0 respectively. The perimeter penalty term, P , is introduced into the formulation

of the objective function to discourage the emergence of small geometric features. The perimeter

measure is the interface area of Γc and Γv, and is computed as follows:

P =

ˆ
Γc∪Γv

dΓ. (10.3)

The mechanical response contribution and the perimeter measure penalty are normalized by the

initial measures, z0 and P0, respectively. While a perimeter penalty does not explicitly control the
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local shape and the feature size, it has been reported effective in regularizing structural optimization

problems [104]. In addition, for specific problems we constrain the ratio of volumes occupied by

either solid, V A and V B, to exclude trivial solutions. To provide control over the weighting of

both the perimeter penalty and the volume inequality constraint, cp is the weight of the perimeter

penalty, and cv controls the desired volume ratio between the two solids. While the proposed

optimization framework allows considering other objectives and constraints, such as strain energy,

displacement and stress measures, we found that the formulations of the optimization problem used

here are well suited to illustrate the influence of the interface condition on the optimized design.

The dependency of the objective function and constraints on the optimization variables, s,

are defined by the framework described in Section 2.4. Note that the objective also depends on

the structural response: z(s, û), where û denotes the vector of discretized state variables that are

considered dependent variables of s, i.e. û(s). The discretized state equations are described in

Section 10.3. The optimization problem is solved by a nonlinear programming (NLP) method, and

the design sensitivities are calculated by the adjoint method.

10.3 Physics Model

Static equilibrium of phases ΩA and ΩB within the design domain is satisfied by the balance

of linear momentum referred to the reference configuration Ωp
0 for p = A,B:

∇ · (Fp Sp) + bp0 = 0 in Ωp
0 , (10.4)

subject to the Dirichlet boundary conditions:

up = Up on ΓpU , (10.5)

where up is the displacement vector, Fp is the deformation gradient tensor, Sp is the second Piola-

Kirchhoff stress tensor, bp0 is the reference configuration body force vector, and Up is the vector

of prescribed displacements at the boundary ΓpU . We assume a hyper-elastic neo-Hookean material

behavior and a nonlinear kinematic relationship:

Sp = λp ln (det Fp) (Cp)−1 + µp
(
I− (Cp)−1

)
, (10.6)
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Figure 10.2: Parametric representation of surfaces belonging to materials A and B.

with

Cp = FpT Fp, Fp =
∂xp

∂Xp
, xp = up + Xp, (10.7)

where λp and µp represent the material Lamé parameters, Cp is the right Cauchy-Green tensor, I is

the identity matrix, xp is the current position, and Xp is the reference position of phase p = A,B.

In the presence of large relative motion between surfaces, the dependence of coincident lo-

cation along the interface on the displacements of either body needs to be accounted for. To this

end, the surfaces of both structural phases are mapped to parametric space. This parametrization

simplifies the definition of coincident surface location by describing surface position Xp and sub-

sequently the displacements up in a reduced dimensional space. The surfaces of phase A and B

are parameterized by some functions fA and fB of the surface parameters α and β respectively,

as illustrated in Figure 10.2. The set of parametric functions, fA and fB, used in this chapter are

directly related to the method of discretization, and are detailed in Section 5.1.

To provide a continuous representation of coincident surface position, both surface parametriza-

tion schemes are coupled through the following relationship:

XA (α) + uA
(
XA (α)

)
+ gnn

A
(
XA,uA

)
−XB (β)− uB

(
XB (β)

)
= 0 , (10.8)
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where gn is the magnitude of the gap between both surfaces in the direction of the deformed configu-

ration surface normal nA; see Figure 10.2. Utilizing a master-slave approach, surface position β and

the scalar normal gap gn are defined through (10.8) for any given surface position α. Qualitatively,

this expression states that for any given position along surface xA in the current configuration, the

coincident position along surface xB can be found by a projection in the direction of the deformed

surface normal, nA.

Along either surface in the reference configuration, the following non-penetration conditions

apply:

gp0 λ
p
0 = 0, gp0 ≥ 0, λp0 ≤ 0, (10.9)

with

λp0 = (np0)
T

Sp np0, (10.10)

gp0 = gnjp, (10.11)

jp = det (Fp) ‖Fp−Tnp0‖, (10.12)

where the gp0 is the normal gap between the bodies pulled back to the reference configuration of

material p, gn is the normal gap between bodies in the deformed configuration, and λp0 is the surface

traction in normal direction in the reference configuration. The Jacobian of the surface area, jp, is

derived from Nanson’s formula, as outlined in [113]. As the bodies cannot interpenetrate, the gap

must be greater than or equal to zero. The surface traction is negative when bodies are in contact,

but vanishes as they separate. Thus, λp0 serves as the Lagrange multiplier of the non-penetration

condition. Considering that in the deformed configuration the surface pressures are identical,

λB = λA and thus λB0 j
B−1

= λA0 j
A−1

, (10.13)

we express the surface pressure with just λA0 , residing within the master reference configuration,

ΓAc,0. In particular, ΓAc,0 is the undeformed contact surface of phase A. To simplify notation, we
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drop the superscript and define the Lagrange multiplier as λ0 ≡ λA0 . Provided that in three-phase

problems we do not allow the void material interface to directly connect to the contact interface

Γc , i.e. φ1 = φ2 = 0, both material surfaces are coincident in the reference configuration and the

initial gap, gn, is zero.

The XFEM discretization of the contact problem is based upon the following stabilized weak

form of the governing equations:

∑
p=A,B

ˆ
Ωp0

F(νp) : (FpSp) dΩ−
∑
p=A,B

ˆ
Ωp0

νp · bp0 dΩ

−
∑
p=A,B

ˆ
ΓpN,0

νp ·Tp
0 dΓ−

ˆ
ΓAc,0

δgA0 λ0 dΓ + rG = 0 , (10.14)

where νp is an admissible test function, Tp
0 is a prescribed traction at the external boundary ΓpN,0,

δgA0 is the variation of the normal gap pulled back to the undeformed surface of phase A, and rG

is a stabilization term discussed in Section 10.4.2. Similar to the augmented Lagrange formulation

presented by [113], the Lagrange multiplier is governed by the following constraint equation:

ˆ
ΓAc,0

µ
(
λ0 − λ̃0 − γ gA0

)
dΓ = 0, (10.15)

with

λ̃0 = κAnA0
T
SAnA0 + κBnB0

T
SBnB0 j

B−1
jA (10.16)

where µ is a test function for the non-penetration condition, λ̃0 is a weighted average of the surface

traction in the normal direction and κp are weighting factors such that κA + κB = 1. In our

experience, the penalty factor γ discourages penetration during the early stages of convergence,

but becomes less significant as equilibrium is achieved and the gap value gA0 approaches zero.

The formulations for κp and γ are related to discretization, and are provided in Section 5.1. The

constraint equation (10.15) and contact contributions to the weak form of the equilibrium equations

(10.14) are integrated over ΓAc,0, and an active set strategy is used to handle the inequality constraint

regarding surface separation.



www.manaraa.com

120

and current (b) configuration.

Figure 10.3: Element immersed surface parametrization in the undeformed (a)

10.4 Numerical Implementation

10.4.1 Contact Equilibrium Contributions

The XFEM retains a piece-wise continuous definition of the interface geometry subject to

the chosen method of LSF interpolation. For STS integration of the contact contributions to

the equilibrium equation (10.14), coincident locations at the contact interface must be identified

as illustrated in Figure 10.3. Locations cp1 and cp2 correspond to the interface boundaries for a

particular element of phase p, while α̂1 and α̂2 are the limits of integration for this particular element

pair. Provided that the coincident surface location is governed by (10.8), element integration limits

are deformation dependent. To recover a fully consistent tangent stiffness, which is essential to the

accuracy of the adjoint sensitivity analysis, these integration limit dependencies on the solution

must be accounted for.

If the integration limit coincides with the element boundary of phase A, i.e. xA (α̂i) = cAi , it

is solution independent. However, if the integration limit α̂i does not coincide with the elemental

boundary cAi , as is the case for α̂1 in Figure 10.3, its position depends on the projection of cB1 onto

the phase A surface in the deformed configuration. The integration limit α̂1 and its dependencies

on the displacement field are defined through (10.8).
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In this chapter, the zero level set iso-contour is interpolated linearly within an intersected

element and the position of a point on the intersection is parameterized by:

Xp (ξ) = (1− ξ) cp1 + ξcp2 , (10.17)

where the local coordinate ξ corresponds to either α or β for phase A or B respectively. The

test and trial functions for the normal surface traction, µ and λ0, are piecewise linear for each STS

element pair, but not necessarily continuous across element boundaries. Thus, the associated degree

of freedom can be computed for each STS element pair and condensed from the global system of

equations.

Following the work of [6], the weighting factors κp for computing the average normal traction

in (10.16) depend on the elemental intersection configuration as follows:

κA =
|Ω|A/EA

|Ω|A/EA + |Ω|B/EB
,

κB =
|Ω|B/EB

|Ω|A/EA + |Ω|B/EB
,

(10.18)

where |Ω|p denotes the elemental volume occupied by phase p = A,B and Ep is the Young’s

modulus of phase p = A,B. The penalty factor in (10.15) depends on the element size h and is set

to:

γ =
EA + EB

h
. (10.19)

10.4.2 Stabilization

During the design optimization process, the interface of the embedded geometry may produce

intersection configurations where certain degrees of freedom interpolate to very small subdomains.

This causes an ill-conditioning of the mechanical model system, which may impede the convergence

of the nonlinear problem. In the context of contact problems, the vanishing zone of influence of a

particular degree-of-freedom may also result in artificially high stress approximations in localized

regions near the interface, leading to the erroneous evaluation of the contact pressure. To mitigate

ill-conditioning of the system and poor structural response prediction at the interface, we apply a
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face-oriented ghost-penalty formulation. Similar to the stabilization method for diffusion problems

presented by [17], we penalize the jump in stress across element borders, and define the stabilization

term rG in (10.14) as:

rG =
∑
p=A,B

ˆ
Γ0
e

γG
s
∂νp

∂X

{
n0
e JSpK n0

edΓ, (10.20)

where Γ0
e is the reference configuration boundary of intersected elements, γG is a penalty parameter,

ν is an admissible test function, n0
e is the reference configuration surface normal of the element

boundary, and the jump operator,

JζK = ζ|Ω1
e
− ζ|Ω2

e
, (10.21)

computes the difference of a particular quantity across the facet between two adjacent elements,

Ω1
e and Ω2

e. The penalty parameter, γG, is defined as:

γG = ε h (10.22)

where ε is a problem-specific scaling factor and h is the element side length. The jump in stress is

penalized across the entire element border, irrespective of where the interface intersects it. Face-

oriented ghost penalization has been reported as being beneficial to various fluid flow related prob-

lems, including fluid-solid interactions [16], high Reynolds number flows [88], and incompressible

flows [87]. For more information the reader is referred to Section 7.2.

10.4.3 Dynamic Relaxation

Contact problems often experience moments of neutral equilibrium, and can exhibit snap-

through behavior. In this work the discretized mechanical model is solved using a Newton-Raphson

iterative procedure, which may suffer from convergence difficulties in such scenarios. To mitigate

these issues, we use a Levenberg-Marquardt [71] type method for dynamic relaxation. Initially

developed to solve non-linear least square problems, this algorithm has also been reported useful in

reducing analysis instabilities caused by element distortion in compliant mechanism optimization

problems [48]. We adopt a similar approach by modifying the tangent stiffness matrix:

J̃ = J + β diag (J) , (10.23)
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where J is the original tangent stiffness matrix, β is the damping parameter, and J̃ is the modified

tangent stiffness matrix. The damping parameter is given an initial value, and adaptively increased

or decreased by a factor of 10 depending on whether the satisfaction of equilibrium improves or

deteriorates throughout the iterative solution procedure. The initial value of the damping parameter

is β = 0.01 for the problems presented in this chapter. For more information, the reader is referred

to Section 7.3.

10.5 Numerical Examples

To demonstrate the accuracy of the proposed framework, we first verify both the physical

response prediction and adjoint method. Subsequently, a comparative study explores optimal design

improvements for large strain theory over small strain theory. Finally, problems with objectives

that characterize the structural response during a quasi-static loading process illustrate the main

characteristics of the proposed framework.

For all examples, we assume plane strain conditions and a quasi-static response. Finite

strain kinematics and large sliding contact are used unless specified otherwise. The mechanical

model is discretized with bilinear Quad-4 elements using the framework described in Section 5.1.

The nonlinear contact problems are solved by Newton’s method with dynamic relaxation, using an

active set strategy for the contact conditions. A drop of the residual of 10−6 relative to the initial

residual is required, unless stated otherwise. Loads are applied incrementally, and a direct solver

is used for the linearized sub-problems.

The parameter optimization problems are solved by the Globally Convergent Method of

Moving Asymptotes (GCMMA) of [97]. The parameters for the initial, lower, and upper asymptote

adaptation are set to 0.5, 0.7, and 1.2, respectively. The relative step size, ∆s, is given with each

example. The design sensitivities are computed with the adjoint method. The reader is referred

to [7], [54] and [53] for an in depth discussion of sensitivity analysis for contact problems. In

this work, the partial derivatives of the state equations and objective function with respect to the

state variables are evaluated using analytically differentiated formulations. The partial derivatives
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of the objective, constraints, and element residuals with respect to the optimization variables are

calculated by a finite difference scheme, which is computationally inexpensive as only intersected

elements need to be considered.

10.5.1 Mechanical Model Verification: Planar Interface

Consider a rectangular domain with a linear interface shown in Figure 10.4. The rectangular

Figure 10.4: Large strain, frictionless contact benchmark setup.

domain is composed of two non-overlapping subdomains ΩA and ΩB such that Γc = ΩA∩ΩB is the

contact interface. Dimensions for the model are L1 = 4m, L2 = 3.9m, and L3 = 2.1m. Subdomains

ΩA and ΩB are neo-Hookean materials of the same properties, where frictionless contact is imposed

at Γc via a stabilized Lagrange method. A contact search algorithm is employed to determine

overlapping element segments. Displacements at the top edge of ΩA are prescribed as UAx = 0.3

and UAy = −0.3, whereas the bottom edge of ΩB is fixed. This example is chosen to demonstrate

the convergence behavior of total contact force and penetration error with mesh refinement.
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To examine the convergence behavior of the mechanical model, the problem was run for four

different mesh sizes: Mesh 1 consists of 7 × 9 elements, Mesh 2 contains 13 × 19 elements, Mesh

3 has 21× 31 elements, and Mesh 4 consists of 41× 61 elements. The consistent tangent stiffness

derived in Section 6.2.2.6 results in forward analysis quadratic convergence, requiring on average

4-10 newton iterations to converge to a tolerance of 1 × 10−8. Surface contact forces and normal

penetration errors were extracted at the interface for all models. Figure 10.5 demonstrates the total

contact force convergence with mesh refinement.
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Figure 10.5: Total surface force convergence with Mesh refinement.

For verification, this benchmark problem was modeled in Abaqus using a body-fitted mesh

and Quad-4 plain strain elements. Interface conditions were represented using a surface-to-surface,

frictionless stabilized Lagrange formulation. All material parameters and model dimensions were

kept consistent with Figure 10.4. The accuracy of the stress prediction of the current mechanical

model to a body fitted solution produced by Abaqus is illustrated in Figure 10.6. Furthermore, the
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Figure 10.6: Comparison of von Mises stress for (a) Abaqus and (b) current implementation.

total contact force was measured at the interface and plotted as a function of applied displacement.

The comparison between the current framework and results produced by Abaqus are illustrated in

Figure 10.7.

10.5.2 Mechanical Model Verification: Curved Interface

To verify the accuracy of the XFEM mechanical model, a benchmark example is studied and

compared to results produced by Abaqus R© using a conformal mesh. We consider a square domain

which is composed of two non-overlapping subdomains ΩA and ΩB; see Figure 10.8. The contact

interface Γc = ΩA ∩ ΩB is defined by an arc of radius r. The volumes occupied by either phase,

ΩA and ΩB, are modeled by neo-Hookean materials of the same properties. Displacements at the

top edge of ΩA are prescribed and incrementally increased in 50 load steps to a maximum value of

UAx = 0.5 and UAy = 0.0. The bottom edge of ΩB is fixed. Dimensions and material properties for

the model are presented in Table 10.1.

To examine the convergence behavior of the mechanical model, the problem is analyzed for
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Figure 10.7: Comparison of total contact force as a function of applied displacement.

four different mesh sizes: Mesh 1 consists of 5×5 elements, Mesh 2 contains 11×11 elements, Mesh 3

has 21×21 elements, and Mesh 4 consists of 51×51 elements. The coupled parametric representation

Figure 10.8: Large strain, frictionless contact
benchmark setup.

Description Parameter

domain length L = 1.0 m
interface radius r = 1.2 m
Young’s modulus EA = 10 MPa
Young’s modulus EB = 10 MPa
Poisson’s ratio νA = 0.3
Poisson’s ratio νB = 0.3
applied displacement UAx = 0.5 m

Table 10.1: Benchmark mechanical
model parameters.
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of coincident surface location facilitates a quadratic convergence, requiring on average 6 Newton

iterations to converge to a tolerance criterion of 1 × 10−9. Surface contact forces and normal

penetration errors are extracted at the interface. Figure 10.9 demonstrates the total contact force

convergence with mesh refinement.

Figure 10.9: Total surface force as a function of
applied displacement.

Figure 10.10: Integrated L2 error with mesh re-
finement.

Additionally, Figure 10.10 illustrates the integrated penetration L2 error for each mesh used.

The L2 error is determined as follows:

L2 error =

√´
λ0<0

´
Γc

g2
n dΓdt´

Γc
dΓ

, (10.24)

where t is a pseudo-time which describes the loading process, and gn is the normal gap between

surfaces in contact. The normal gap, gn, is only integrated across contact element pairs when

they are in an active state of contact, i.e. λ0 < 0. The curved interface is described by a linearly

interpolated LSF. This approach leads to a segmented interface that may yield poor response

predictions at low levels of mesh discretization. As the mesh is refined, the force profile converges;

see Figure 10.9. Considering the non-penetration condition is enforced weakly at the interface,

surface penetration error diminishes with mesh refinement; see Figure 10.10. While the general

rate of convergence appears to be linear, the author notes that due to the coarseness of the first
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two meshes some deviation could be due to pre-asymptotic behavior.

Figure 10.11: Comparison of von Mises stress for (a) Abaqus R© and (b) current implementation.

Figure 10.12: Comparison of total contact force as a function of applied displacement.

For verification purposes, this benchmark problem is modeled in Abaqus R© using a body-fitted

mesh with 50×50 Quad-4 plane strain elements. Interface conditions in Abaqus R© are enforced

using a surface-to-surface, frictionless augmented Lagrange formulation. All material parameters

and model dimensions are kept consistent with Figure 10.8 and Table 10.1. The stress prediction of

our XFEM model is compared to the Abaqus R© results in Figure 10.11. Furthermore, the results for

the total contact force as a function of the applied displacements are shown in Figure 10.12. The
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relative difference between the XFEM and Abaqus R© force predictions, integrated over the loading

process, is 6.5× 10−4.

10.5.3 Sensitivity Analysis Verification

Figure 10.13: Sensitivity verification model
setup.

Description Parameter

domain length L = 1.0 m
interface radius r1 = 1.2 m
fixed radius r2 = 0.125 m
Young’s modulus EA = 10 MPa
Young’s modulus EB = 10 MPa
Poisson’s ratio νA = 0.3
Poisson’s ratio νB = 0.3
applied load TA = (10, 0) kPa/m
observation point p

Table 10.2: Sensitivity verification model
parameters.

Figure 10.14: Von Mises stress distribution for
r1 = 0.275 m.
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Figure 10.15: Objective value as a function of
material interface radius; sensitivity evaluated
for range of radii highlighted in red.

To verify the accuracy of the design sensitivities evaluated by the adjoint method for problems

involving large sliding contact, we consider the optimization problem illustrated in Figure 10.13.

The square design domain of length L is held in place by a circular inclusion of radius r1, fixed
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within radius r2. In addition, the left hand edge of the design domain is constrained in the y-

direction. An external traction TA is distributed along the right hand edge and applied in two load

steps. Frictionless contact is modeled at the material interface. The converge criterion for solving

the nonlinear systems in each load step by Newton’s method is set to 1× 10−9. The XFEM model

is discretized with 20×20 elements. The model parameters are listed in Table 10.2.

The objective function is defined as:

z = 1× 104
(
ux (p)− 2.7731× 10−2

)2
. (10.25)

The design variable, s, defines radius of the circular inclusion, i.e. r1 = s. The inclusion is described

by the following LSF:

φ = r1 −
√

(x− 0.5)2 + (y − 0.5)2. (10.26)

To evaluate the behavior of the objective function with respect to the design variable, the inclusion

radius is swept from 0.191 ≤ r1 ≤ 0.375. Figure 10.14 illustrates the mechanical response at

r1 = 0.275 m. The objective value over the interface radius is plotted in Figure 10.15. The results

show a rather smooth dependency of the objective on the interface radius.

10 -10 10 -5
72.08

72.1
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72.14
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Figure 10.16: Sensitivity of objective value with respect to inclusion radius evaluated by semi-
analytical adjoint method and finite differencing over a range of perturbation sizes.
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To verify our adjoint sensitivity analysis method, the semi-analytical evaluation of the sen-

sitivities is compared to the results of a central finite differencing scheme. Figure 10.16 plots

the semi-analytical and finite differenced sensitivities as a function of the perturbation size. At

extremely small perturbation sizes, machine precision round off errors affect the accuracy of the

design sensitivities. For this particular problem, perturbation sizes larger than ∆s > 10−4 yield

linearization errors when using finite differencing. For perturbations between 10−8 and 10−5 there

is good agreement between both semi-analytical and finite differenced values. The relative error

between both methods at a perturbation size of 10−8 is 4.62×10−10. However, in addition to being

computationally less expensive, the adjoint method is less sensitive to the perturbation size than

finite differenced design sensitivities.

10.5.4 Material Anchor Design Problem

To compare designs optimized with finite strain theory to designs optimized with infinitesimal

strain theory, we study a material anchor design problem. A structural anchor is embedded within

a host material of the same properties, with frictionless contact at the interface to afford resistance

to separation. The objective is to find an optimized anchor geometry such that the resistance is

maximized. This problem was originally studied under a small strain assumption by [59]. The

initial material distribution and boundary conditions are illustrated in Figure 10.17, while model

parameters are listed in Table 10.3. The volume occupied by the anchor material, ΩB, is fixed at

Γ1, while a prescribed displacement, UAx , is applied to the volume occupied by the host material,

ΩA, along Γ2−4. Displacements are constrained to zero in the y direction along Γ2−4. To prevent

the anchor material from directly connecting boundary Γ1 to boundaries Γ2−4, they are excluded

from the design domain.

For this example, we wish to determine the optimal geometry such that the force at Γ1 is

maximized. The mechanical response contribution to the objective function in Equation (10.1) is
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Figure 10.17: Material anchor initial configura-
tion.

Description Parameter

domain length L1 = 1.0 m
host depth L2 = 0.175 m
lattice length L3 = 0.715 m
lattice width L4 = 0.523 m
cuboid length L5 = 0.0833 m
anchor base width L6 = 0.2 m
fixed support width L7 = 0.133 m
lattice thickness t = 0.038 m
Young’s modulus EA = 10 MPa
Young’s modulus EB = 10 MPa
Poisson’s ratio νA = 0.3
Poisson’s ratio νB = 0.3
applied displacement UAx = 0.01 m
response weight cu = 75
penalty weight cp = 25
volume ratio cv = 0.5
opt. upper bounds smax = 8.33× 10−3

opt. lower bounds smin = −8.33× 10−3

rel. step size ∆s = 8× 10−3

smoothing radius rf = 0.0375 m

Table 10.3: Nominal material anchor model pa-
rameters.

defined as:

z = 100−
ˆ

Γ1

σxxdΓ, (10.27)

where σxx denotes the normal Cauchy stress in the x direction. To regularize the problem, a

perimeter penalty of cp = 0.25 is applied. To prevent the anchor material from occupying the

majority of the design space, a volume constraint of 50 % is applied to the anchor material, i.e.

cv = 0.5. Due to the symmetric nature of the problem, only one half of the domain is analyzed

with 120×60 elements. The linear level set filter (2.10) for this problem is set to r = 4.5h, where

h is the element side length.

10.5.4.1 Nominal Design

We first present the results of the material anchor nominal design, using the design parameters

listed in Table 10.3. The magnitude of applied load for this example, UAx = 0.01 m, was specifically
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Figure 10.18: Material anchor design objective history with snapshots of specific iterations. Inset
depicts the force-displacement curve for specific iterations.

chosen to keep the experienced strain well within the limitations of small strain theory. This allows

comparing the results of the proposed optimization method for large strain contact with the results

of [59] where infinitesimal strains, a linear elastic response, and negligible sliding between surfaces

were assumed. Here, the displacement, UAx , is applied in two load steps.

Figure 10.18 illustrates the objective value history during optimization, supported by snap-

shots of the mechanical response for specific design iterations. The anchor material quickly merges

to a uniform body, producing ridges or spines along the outer surface to afford resistance to sep-

aration. In the early stages of convergence, topological changes result in an abrupt change in the

measured objective value. Once the topology remains unchanged, the optimization process con-

verges smoothly. The optimized geometry closely resembles the small strain theory analog presented

by [59].
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10.5.4.2 Load Case Study

Even for problems which maintain small relative motion between surfaces in contact, infinites-

imal strain theory may still result in mechanical response evaluation inaccuracies. Infinitesimal

strain theory assumes that the surface orientation in the current configuration differs insignifi-

cantly from that of the undeformed configuration. This assumption may lead to errors in contact

pressure estimation and affect the optimized geometry. To illustrate this issue, the applied displace-

ment is increased, and the material anchor problem is optimized for both large and small strain

theory. For this load case study, we adopt a continuation approach, where the second load case

uses the previous optimized geometry as an initial configuration.

Figure 10.19: Comparison of optimized geometry for small and large strain theory for various
applied displacements.

Figure 10.19 compares small and large strain theory optimized geometries for two different

magnitudes of applied loads. At the smallest load case, UAx = 0.01 m, the optimized material an-

chor profile produced by small strain theory closely resembles that resolved by large strain theory.

However, at the higher load case, UAx = 0.025 m, the discrepancy between the optimized geometries

becomes more noticeable, although the conceptual designs differ insignificantly. The close resem-

blance in geometry can be attributed to similar physical responses. To illustrate these similarities,

the optimal geometries for both infinitesimal strain and finite strain theory are incrementally loaded

in 15 steps for the larger load case of UAx = 0.025 m. Figure 10.20 presents the experienced force

profile as a function of applied displacement. At this load level, the large strain contact model
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displays a rather linear response, similar to the infinitesimal strain contact model.

To cross examine the performance of geometries optimized with infinitesimal strain theory

and finite strain theory, the optimized geometries are analyzed with finite strain theory. Table

10.4 compares the holding force of the geometries provided in Figure 10.19 when analyzed strictly

with finite strain theory. For the loading cases UAx = 0.01 m and UAx = 0.025 m, the optimized

geometry produced from small strain theory results in a decrease in holding force of 0.0026%

and 0.0081% respectively, when compared to the optimized geometry produced from large strain

theory. While the improved performance of optimal geometry from finite strain theory is small, this

example demonstrates the limitations of infinitesimal strain theory for these types of optimization

problems. To explore optimization problems in which the physical behavior cannot be predicted

with any acceptable accuracy using infinitesimal strain theory, the following examples study design

problems with highly nonlinear response behavior.

Figure 10.20: Comparison of resistance to separation for incremental loading to the maximum value
UAx = 0.025 m.
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Optimized geometry for: Holding force for load case:

UAx = 0.01 m UAx = 0.025 m

Finite strain 2.265 kN 5.679 kN

Infinitesimal strain 2.259 kN 5.633 kN

Table 10.4: Holding force of optimized geometries using finite strain theory.

Figure 10.21: Snap-fit design initial configura-
tion.

Description Parameter

domain length L1 = 1.0 m
host depth L2 = 0.151 m
peak width location L3 = 0.4 m
base width location L4 = 0.9 m
peak height H1 = 0.2451 m
base height H2 = 0.16 m
fixed support height H3 = 0.133 m
Young’s modulus EA = 10 MPa
Young’s modulus EB = 10 MPa
Poisson’s ratio νA = 0.3
Poisson’s ratio νB = 0.3
applied load, at t = 1 UAx = 0.5 m
response weight cu = 100.0
penalty weight cp = 0.0
volume ratio cv = 1.0
opt. upper bounds smax = 0.0125
opt. lower bounds smin = −0.0125
rel. step size ∆s = 8× 10−3

smoothing radius rf = 0.0375 m

Table 10.5: Snap-fit design model parame-
ters.

10.5.5 Snap-Fit Design Problem

Snap-fits remain one of the fastest and cost effective methods of assembly. This simplistic

fastener relies on two interlocking components, which if designed properly can be assembled and dis-

assembled numerous times without damaging the components. For applications demanding a high

level of precision, the force required to induce separation can be pivotal. Snap-fit designs exhibit a

highly nonlinear mechanical response, and during the process of separation the mechanical model

can experience moments of neutral and unstable equilibrium. This poses interesting challenges for

both the mechanical response prediction, and subsequently the optimization of snap-fit designs.
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Here we pose the snap-fit design problem as follows: We wish to find the optimal geometry

of a snap-fit mechanism to match a desired load-displacement profile. This problem formulation

is explored for two scenarios: the first example is a two phase design in which geometry control

is provided by discretized level set nodal variables; the second example is a three-phase design in

which geometry control is provided by geometric primitive variables.

10.5.5.1 Two-Phase Example

The initial configuration is illustrated in Figure 10.21, and dimensions and material parame-

ters are listed in Table 10.5. The snap-fit tab, represented by Phase B, is fixed at the boundary Γ1,

whereas the snap-fit container, represented by phase A, is subjected to a prescribed displacement

along boundary Γ2, which is applied in 45 equal load increments.

The objective function is defined as follows:

z =

ˆ (ˆ
Γ1

σxxdΓ− ft
)2

dt, (10.28)

where ft is a target force profile, and the pseudo-time t represents the incremental loading process.

For this particular example, the desired force profile is defined as:

ft = sin

(
3π

2
t

)
kN 0 ≤ t ≤ 1. (10.29)

The desired force profile describes a sinusoidal profile with a peak value of 1 kN. This particular force

profile was chosen to highlight a design exhibiting a high level of physical response non-linearity.

For geometry control, the nodal level set values are defined in terms of the optimization

variables using the linear filter (2.10). The smoothing radius is set to r = 3h, where h is the element

side length. No perimeter penalty measures or volume constraints are used for this example. The

smoothness of the target force-profile causes localized geometry irregularities to be non-beneficial

to the design functionality. Due to the symmetric nature of the design, only half of the domain is

analyzed with 80×40 elements.

Figure 10.22 shows the convergence profile of the optimization problem, supported by snap-

shots of the mechanical response at the final time step for select design iterations. The inset of
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Figure 10.22: Snap-fit design objective history with snapshots of specific iterations. Inset depicts
the force-displacement curve for specific iterations.

Figure 10.22 shows the experienced force-displacement profile, compared to the desired profile for

specific design iterations. The stem of the tab increases in concavity, increasing the experienced

force at the base. The peak width of the tab is increased, whereas the pointed head of the tab

flattens out. The geometry evolution observed increases the peak force experienced, and provides

a close fit to the desired force-displacement profile. The non-smooth nature of the final design

force-displacement curve can be attributed to the piecewise linear interface representation in the

XFEM model.

10.5.5.2 Three-Phase Example

The two-phase snap-fit design demonstrated the optimization of a problem experiencing large

sliding motion, but with rather small elastic deformations. The three-phase analog explores an

optimization problem exhibiting large sliding contact in the presence of large elastic deformation, by
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Figure 10.23: Snap-fit design initial configura-
tion.

Description Parameter

domain length L1 = 1.0 m
fixed support height H1 = 0.133 m
host depth s1 = 0.151 m
peak width location s2 = 0.4 m
base width location s3 = 0.9 m
peak height s4 = 0.2451 m
base height s5 = 0.16 m
Young’s modulus EA = 10 MPa
Young’s modulus EB = 10 MPa
Poisson’s ratio νA = 0.3
Poisson’s ratio νB = 0.3
applied displacement UAx = 0.6 m
response weight cu = 99.9
penalty weight cp = 0.1
volume ratio cv = 0.15
rel. step size ∆s = 4× 10−4

Table 10.6: Snap-fit design model param-
eters.

introducing void regions within the tab material. The three-phase snap-fit design problem describes

the design domain using a combination of geometric primitives, wherein the variables associated

with the geometric primitives are defined as optimization variables. While the design freedom is

restricted to the set of shapes that can be produced by the particular geometric primitives, the

three-phase example explores a different avenue of complexity by introducing void regions within

the tab material, i.e. phase B.

The initial configuration is illustrated in Figure 10.23, and dimensions and material param-

eters are listed in Table 10.6. Similar to the two-phase snap-fit example, the tab material is fixed

at the boundary Γ1 and a prescribed displacement is applied at boundary Γ2 in 45 load steps.

Provided the same objective of matching a target force displacement profile measured at Γ1, a new

target force displacement curve is defined as:

ft = 0.5 sin

(
3π

2
t

)
kN 0 ≤ t ≤ 1. (10.30)

Provided the increased applied displacement value of UAx = 0.6 m, the target force displacement

curve for this example exhibits a delayed peak force value as compared to the two-phase example.
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Description Variable Initial Value Upper Bound Lower Bound

host depth s1 0.151 m 0.3 m 0.1 m
peak width location s2 0.4 m 0.7 m 0.25 m
base width location s3 0.9 m 1.0 m 0.8 m
peak height s4 0.2451 m 0.4 m 0.15 m
base height s5 0.16 m 0.25 m 0.04 m
φc,1 x center xc,1 0.4 m 0.85 m 0.25 m
φc,2 x center xc,2 0.6 m 0.85 m 0.25 m
φc,3 x center xc,3 0.8 m 0.85 m 0.25 m
φc,1−3 x radius rx,1−3 0.07 m 0.3 m 0.02 m
φc,1−2 y radius ry,1−2 0.07 m 0.2 m 0.02 m
φc,3 y radius ry,3 0.035 m 0.06 m 0.02 m

Table 10.7: Initial value, upper and lower bounds for three-phase snap-fit design problem.

This is done to promote larger deformations prior to exceeding the point of neutral equilibrium.

The design geometry is defined by two LSFs; see Section 2.4.2. The first LSF governs the

material interface between subdomains ΩA and ΩB and is defined the optimization variables s1−s5:

φ1 = −|Y |+ a sin (θ) + p X̃, (10.31)

where

a =
s4

2
− p s2

s2 + s3
, p =

(s4 + s5) (s2 + s3)

4s2 + 2s3
, X̃ =

X − s1

s2 + s3
, (10.32)

and the auxiliary coordinates,

θ = ãX2 + b̃X + c̃, (10.33)

are defined by the following scalar values

ã =
π (2s2 − s3)

2s2s3 (s2 + s3)
, (10.34)

b̃ =
π
(

(s1 + s2 + s3)2 − 3 (s1 + s2)2 + 2s2
1

)
s2s3 (2s2 + 2s3)

, (10.35)

c̃ = −
π s1

(
−2s2

2 + 2s2s3 − 2s1s2 + s2
3 + s1s3

)
s2s3 (2s2 + 2s3)

, (10.36)
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The geometric primitives chosen for the LSF φ1 conveniently allow control over the length, peak

width, and narrow width of the tab material outer geometry, while maintaining a smooth curvature

of the profile.

The second LSF distinguishes ΩV from ΩB. The geometric primitives chosen for the LSF φ2

define ellipsoidal void regions, shown in Figure 10.23, which can move along the x-axis and grow

or shrink in size. The LSF φ2 is defined as a combination of elliptical conical LSFs,

φc,j =

((
X − xc,j
rx,j

)2

+

(
Y − yc,j
ry,j

)2
)2

− 1, (10.37)

where the jth-elliptical conical field φc,j is defined by variables xc,j and yc,j which control the central

location of the ellipse, and parameters rx,j and ry,j which control the semi-axis radii of the ellipse.

Using three elliptical conical LSFs, the LSF φ2 is defined as:

φ2 = min (φc,1, φc,2, φc,3) . (10.38)

The y-location of the conical fields are restricted as yc,j = 0, and are excluded from geometry

control.

The initial values, upper limits, and lower limits for all design variables for this problem are

presented in Table 10.7. A volume constraint of cv = 0.15 is enforced to reduce the material of ΩB,

and a perimeter penalty weight of cp = 0.1 used to regularize the void material interface. Due to

the symmetric nature of the design, only half of the domain is analyzed with 80×40 elements. No

level set smoothing filters are used in this example.

The objective history throughout the optimization process is illustrated in Figure 10.24,

supported by snapshots of the physical response of the design at UAx = 0.2133 m for select iterations.

The inset of Figure 10.24 compares the experienced force-displacement of select design iterations

to the desired target profile. Throughout the design evolution, the void material expands until the

void inclusions coalesce. The snap-fit general profile narrows, while the peak width increases. The

combination of these design attributes affords greater elastic stretch in the snap-fit tab, delaying

the maximum force value experienced during incremental loading. This example demonstrates that
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Figure 10.24: Snap fit design objective history with snapshots of specific iterations at applied
displacement UAx = 0.213 m. Inset depicts the force-displacement curve for specific iterations.

the proposed optimization method allows finding non-intuitive optimized designs for frictionless

contact problems experiencing large deformations.

10.5.6 Torque Limiter Design Problem

Torque limiters are common devices used in mechanical equipment to prevent damage from

overload. Also known as an overload clutch, these devices limit the applied torque to an assembly

by slipping or uncoupling the load. Common methods of limiting applied torque by slipping include

frictional plates, magnetic clutches, and ball-detent designs. Taking a simpler approach, the torque

limiter design problem presented here consists of two pieces; an outer square shaft containing an

inner rod with frictionless contact prescribed at the interface. The torque limiter design problem

is explored for two scenarios: the first example is a two phase design in which geometry control

is provided by discretized level set nodal variables; the second example is a three-phase design in
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which geometry control is provided by geometric primitive variables.

10.5.6.1 Two-Phase Example

The torque-limiter design problem consists of an outer shaft, constrained along the outer

boundaries, with an internal rod which is rotated as depicted in Figure 10.25. The outer square

Figure 10.25: Torque limiter initial configura-
tion.

Description Parameter

domain length L1 = 1.0 m
fixed support width L2 = 0.0732 m
loading radius r1 = 0.12 m
interface radius r2 = 0.2911 m
Young’s modulus EA = 10 Mpa
Young’s modulus EB = 10 Mpa
Poisson’s ratio νA = 0.3
Poisson’s ratio νB = 0.3
applied rotation at t = 1 UBθ = π/2 rad
response weight cu = 100.0
penalty weight cp = 0.01
volume ratio cv = 1
opt. upper bounds smax = 0.0244
opt. lower bounds smin = −0.0244
rel. step size ∆s = 1× 10−2

Table 10.8: Torque limiter model parameters.

shaft, represented by phase A, is grounded at boundaries Γ1−4. The inner rod of radius r2, repre-

sented by phase B, is rotated about the centroid with an applied displacement UBθ (t) within radius

r1. The displacement UBθ (t) is applied in 30 equal load increments. Model parameters specific to

this problem are listed in Table 10.8. The objective of this study is to find the optimal geometry

such that the total torque experienced at boundaries Γ1−4 matches a target torque profile. The

objective function is defined as follows:

z =

ˆ (ˆ
Γ1−4

σrθ r dΓ− ft

)2

dt, (10.39)

where σrθ is the shear component of the Cauchy stress in a polar coordinate system, r is the radial

position in a polar coordinate system, and ft is the desired torque profile. For this particular
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example, the desired torque profile is defined as:

ft = 2.5 sin 2πt kN ·m, 0 ≤ t ≤ 1. (10.40)

The chosen target curve describes a load-displacement curve that follows a sinusoidal wave. Pseudo-

time t defines the linear increment of applied rotation during the period of 0 ≤ t ≤ 1. A sinusoidal

target curve provides a gradual transition from experienced torque build-up and decrease, delineated

by a peak target value. The entire domain is discretized with 41×41 elements. For geometry control,

the nodal level set values are defined as the optimization variables. Numerical experiments showed

that while a volume constraint is not necessary for this problem, a perimeter penalty weight of

cp = 0.01 is useful to promote a smooth interface profile. Also the smoothing radius of the linear

filter (2.10) is set to r = 1.5
√

2h m, where h is the element side length.

Figure 10.26: Torque limiter design objective history with snapshots of specific iterations. Inset
depicts the torque-rotation curve for specific iterations.

Figure 10.26 shows the objective history throughout the optimization process, supported by

snapshots of the mechanical response at the final time step for select design iterations. The inset



www.manaraa.com

146

of Figure 10.26 shows the experienced torque profile, compared to the desired profile for specific

design iterations. As expected, the initial circular profile of the inner rod yields no torque as it is

rotated. The interface geometry evolves bumps or ridges, providing a torque-rotation profile that

closely resembles the desired profile.

10.5.6.2 Three-Phase Example

Figure 10.27: Three-phase torque limiter initial
configuration.

Description Parameter

domain length L1 = 1.0 m
fixed support width L2 = 0.0732 m
loading radius r1 = 0.06 m
interface radius r2 = 0.271 m
Young’s modulus EA = 10 Mpa
Young’s modulus EB = 10 Mpa
Poisson’s ratio νA = 0.3
Poisson’s ratio νB = 0.3
applied rotation at t = 1 UBθ = π/3 rad
response weight cu = 99.9
penalty weight cp = 0.1
volume ratio cv = 0.16
rel. step size ∆s = 1× 10−2

Table 10.9: Three-phase torque limiter model
parameters.

The three-phase torque limiter example explores the buildup of strain energy and abrupt

release, also known as ’snap through’ behavior, by introducing void material within the rod phase,

ΩB. Similar to the two-phase snap-fit design problem of Section 10.5.5.2, the three-phase torque

limiter design problem defines geometry by a set of geometric primitive shapes. The initial config-

uration is depicted in Figure 10.27, and model parameters are listed in Table 10.9.

The initial design geometry closely resembles that of the two-phase torque limiter problem,

however, void regions are introduced radially within phase B. Similarly, we wish to determine the
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best arrangement of material to match the desired torque profile:

ft = 5.20 t(1− t)
(

0.5− tanh(30) + tanh(60(t− 0.5))

2 tanh(30)

)
kN ·m 0 ≤ t ≤ 1. (10.41)

The torque profile defined for this problem increases to a peak value, then abruptly drops to

a minimum value before gradually returning to zero at the final load step. This torque profile

encourages a build-up and abrupt release of strain energy. The prescribed displacements are applied

in 30 equal load increments.

Figure 10.28: Torque limiter geometric primitives for (a) φ1 and (b) φ2.

To afford geometry control, both LSFs define the geometric primitives depicted in Figure

10.28. LSF φ1 describes a circle with a sinusoidally varying radius:

φ1 = R−
∣∣∣∣(X −Xc) /L

1

cos(nθ)
− a sin(nθ + ψ)

∣∣∣∣ (10.42)

where R is the base circle radius, a is the amplitude of variations, n is the number of ridges along

the outer surface, Xc and Yc are the center of the design domain, ψ is the phase of variations, and

the auxiliary coordinate θ is defined as

θ = atan2 ((Y − Yc) /L1, (X − xc) /L1) , (10.43)

where atan2 is the four-quadrant inverse tangent. For LSF φ1, the number of ridges must be a

positive integer value, as non-integer values yield a discontinuous zero level-set contour.
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The second LSF, φ2, is describes a series of void petals as shown in Figure 10.28(b). The

LSF describing the petals is taken from [23]. The jth petal is defined by:

φv,j = −hb +

(2X̃vhb
w̃v

)10

+

(
Ỹvhb
hp,j

)10
1/10

(10.44)

The auxiliary coordinates, X̃v and Ỹv, and pedal width, w̃v, are defined as

X̃v = X́ − sign

−X́av,jw̃v sin

3π
(
Ý − hb

)
2hv,j

 , (10.45)

Ỹv = Ý − hb, (10.46)

w̃v = wv,j + π
Ý − hb
Np − 1

, (10.47)

where the number of petals, Np, must be a positive integer. Finally, the rotated coordinate system

can be expressed as:

X́ =
X −Xc

L1
cos (ψv)−

Y − Yc
L1

sin (ψv) , Ý =
X −Xc

L1
sin (ψv) +

Y − Yc
L1

cos (ψv) (10.48)

LSF φ2 is thus defined as

φ2 = min (φv,j) (10.49)

For this optimization problem, the number of outer ridges, n = 4, center location Xc = 0.5m

and Yc = 0.5m, and number of void regions, Nv = 6, are all held constant. Each void region is

distributed radially by increments of π/3, as shown in Figure 10.27. The 28 design variable initial

values, upper and lower bounds are provided in Table 10.10. A volume constraint of cv = 0.16 is

applied to reduce the overall volume occupied by the internal rod, and a perimeter penalty weight

of cp = 0.1 is applied to regularize model geometry. No smoothing filter is used. The design domain

is discretized with 41×41 elements.

Figure 10.29 depicts the objective history of the optimization problem supported by snapshots

of select design iterations throughout the optimization process. The inset plot within Figure 10.29
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Description Variable Initial Value Upper Bound Lower Bound

Outer base radius R 0.271 m 0.4 m 0.1 m
Outer surface amplitude a 0.0 m 0.05 m 0.0 m
Phase of outer surface ψ 0.0 rad π/2 rad −π/2 m
Petal radial location ψv,j var. +∆π/4 m −∆π/4 m
Petal base hb 0.15 m 0.3 m 0.012 m
Petal height hv,j 0.04 m 0.1 m 0.01 m
Petal side variation av,j 0.0 m 0.1 m −0.1 m
Petal Width wv,j 0.1 m 0.3 m 0.05 m

Table 10.10: Initial value, upper and lower bounds for three-phase torque limiter problem.

Figure 10.29: Torque limiter design geometry evolution at UBθ ≈ π/5 rad, colored by von Mises
stress.

shows the torque-rotation curves for select design iterations compared to the target profile. At early

stages of convergence, the contact interface, Γc, evolves to exhibit ridges to increase the experienced

torque along the boundaries Γ1−4. To match the sudden drop in the target torque-rotation curve,

the void regions coalesce to reduce the overall material bridging the area of applied displacement to
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the material in the vicinity of the contact interface. This encourages snap-through behavior. The

optimized design matches the desired torque profile well, illustrating the ability of the proposed

optimization method to find geometries that feature complex mechanical contact behavior.

10.6 Discussion

This chapter presented a shape and topology optimization framework for two- and three-

phase problems with finite strain, large sliding bilateral contact phenomena. Coincident surface

location was defined by a coupled parametric representation of the surface geometry. The interface

condition was described by a stabilized Lagrange formulation with an active-set strategy to allow

surface separation. The material behavior of the mechanical model was described by a hyper-elastic

isotropic material and finite strains were assumed for the mechanical model. The XFEM was used

to discretize and integrate the mechanical model, and a face-oriented ghost penalization model was

used to mitigate the ill-conditioning of the physical response prediction. Dynamic relaxation was

employed to provide reliable convergence.

Geometry control was provided by an explicit LSM, where single and multiple LSFs were used

to describe two- and three-phase geometries, respectively. The optimization problem was solved

with a nonlinear programming method, and a perimeter penalty was used to regularize optimized

geometry. Material phase volume constraints were imposed, and design sensitivities were evaluated

using an adjoint method. The physical response prediction and subsequent design sensitivities were

verified with benchmark examples.

The comparative optimization study between small infinitesimal strain theory and finite strain

theory demonstrated that within acceptable load limits for linearized strain theory, both physical

response models produced similar results. The two-phase snap-fit and torque limiter optimization

studies explored physical response behavior that could not be modeled with infinitesimal strain

theory. Furthermore, it was demonstrated that reliable convergence behavior, and subsequently,

non-intuitive design solutions are feasible for this particular subset of problems. The three-phase

design problems explored in this study demonstrated that void regions within components can
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contribute to design functionality, specifically by increasing the level of elastic deformation and

affording snap through behavior in the snap-fit and torque limiter design problems, respectively.

While this study focused on frictionless and quasi-static contact behavior, the current frame-

work allows for the convenient extension to rate-based interface phenomena such as non-conservative

frictional effects. Some of the non-smooth force-displacement behavior may be attributed to the

piece-wise linear approximation of interface geometry. Future studies could benefit from C1 con-

tinuous discretization. The current optimization method does not allow for the nucleation of a

phase within a volume of another phase. Methods for overcoming this limitation, such as the use of

topological derivatives, should be investigated. Extension into three dimensional problems would

greatly increase the scope of potential applications, as relatively few real world applications can be

reduced into two dimensional space. Additional solution techniques such as arc length methods,

and optimization methods should be explored to improve the stability of the physical response pre-

diction and optimization convergence behavior. In future studies, this method needs to be extended

to the treatment of triple junction intersections and other considerations for a more generalized

multi-phase approach.



www.manaraa.com

Chapter 11

Conclusions

11.1 Summary

This manuscript presented a gradient based optimization method for structural problems

whose functionality is dependent on contact behavior. An explicit Level Set Method of geome-

try control was used, allowing optimization of both shape and topology of the phase boundaries.

Accurate evaluation of contact behavior requires precise knowledge of the interface position and

orientation, which was provided by the eXtended Finite Element Method numerical model. Linear

and nonlinear behavior was employed in the mechanical model, for both geometric and material

considerations. Contact contributions were enforced weakly as immersed boundary value problems,

with both small and large sliding contact behavior. Ill conditioning caused by thinly cut elements

was mitigated by a geometric preconditioner in infinitesimal strain problems, and ghost penalization

in finite strain problems. Robust convergence of the mechanical model through neutral instabili-

ties and snap-through behavior was achieved by a dynamic relaxation method. The accuracy of

the mechanical model was verified through comparisons to published and analytical examples, and

optimization examples explored the defining characteristics of each contact behavior studied.

In two dimensional infinitesimal strain and small sliding frictionless studies, a simple bolted

plate example illustrated the convenient use of geometric primitives to define design features. Com-

parison of optimal designs between perfect bonding and frictionless contact at the interface sug-

gested that different contact behavior may have a noticeable impact on the design, even when the

number of design variables is small and the design freedom is limited. A study on perimeter penalty
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regularization demonstrated that feature size and irregularity can be reduced at a small cost to

the performance of the design. Studies on material properties demonstrated a significant change in

optimal designs for contact problems.

In two and three dimensional cohesive interface studies, the interface conditions were shown

to have a strong influence on optimized geometry, as various levels of normal and tangential re-

sistance yielded drastically different designs. Gradient measure regularization was shown to be

successful at removing small features that are problematic for accurate response prediction and

for manufacturing considerations at a minimal cost to design performance. An initial design ex-

periencing total debonding was optimized to recover interface cohesion and a monotonic resistance

to separation. An applied load study demonstrated that geometry can be tailored to localized

regions where either cohesion or delamination are present. Three dimensional optimization studies

revealed design traits that could not deduced from 2D studies, suggesting that care must be taken

with reduced dimensionality for particular contact problems.

In two dimensional finite strain and large sliding frictionless studies, the accuracy of the

mechanical model was verified through comparison to results produced in Abaqus. Semi-analytical

adjoint method sensitivities were validated by finite difference. A load case study comparison

between large strain and small strain theory demonstrated that linear kinematic approximations

do not correctly capture the mechanical response if the local deformation is comparable to the

feature size. The snap-fit design problem demonstrated that geometry can be tailored in situations

of prolonged sliding contact behavior to match a desired force-displacement curve. The torque

limiter problem demonstrated that a similar geometric tailoring can be achieved where the desired

radial force profile is an averaged measure. The three-phase design problems described the design

domain using a combination of geometric primitives, wherein the variables associated with the

geometric primitives are defined as optimization variables. While the design freedom was restricted

to the set of shapes that can be produced by the particular geometric primitives, the three-phase

examples explored a different avenue of complexity by introducing void regions within a particular

phase.
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In summary, the proposed method has shown great promise to achieve optimized geometry

for a wide variety of contact behavior. Therefore, applying the proposed optimization method to

specific engineering problems seems to be a worthwhile endeavor.

11.2 Future Work

The methodology presented in this thesis has opened many avenues for further research, as

the topology optimization of contact problems is still in its early stages of development within the

scientific community. Provided in this section is compilation of potential avenues for future work,

organized in ascending order of the difficulty of scope.

(1) Investigation of non-conservative, rate based contact behavior The framework

established in this thesis is readily adaptable to many forms of contact phenomena. A close

at hand opportunity is to investigate the optimization of designs in the presence of stiction

and sliding friction.

(2) Optimization of contact interface properties Cohesive or frictional properties could

be tailored locally along the contact interface to attain a desired functionality. To achieve

this, elemental design variables could be introduced, providing interface properties for the

immersed boundary that resides within a particular element.

(3) Higher order geometry and displacement field discretization Parametric represen-

tation of immersed boundaries are limited to planar facets in the studies performed thus

far. By affording C1 continuity at the interface, or by increasing the interpolation order of

the solution field, one may improve the physical response and convergence behavior during

optimization. Additionally, this research avenue would yield a greater resolution of surface

geometry for relatively coarse meshes.

(4) Optimization of contact problems experiencing snap-through or snap-back be-

havior In the current framework, dynamic relaxation and scaled solution increment meth-

ods allow the physical model to converge around neutral instabilities and ‘push through’
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mild cases of snap through behavior. A more robust solver method, such as an arc length

method, could enable the optimization of designs exhibiting snap-through or snap-back

behavior.

(5) Extension of large sliding contact framework to 3D The optimization of problems

experiencing large sliding contact is currently restricted to two dimensional space. While

surface-to-surface integration provides a rich interpolation space for contact traction, it

is worth noting that due to the added complexity, many 3D contact solvers rely on a

node-to-surface method. Contact search algorithms and boundary value problems must

be constructed carefully, as iterative optimization algorithms compound computational

expenses.

(6) Extension to multi-physics problems To access design problems with more complexity,

such as fluid-structure contact problems, the geometry model needs to be extended to a

more generalized multi-phase description. Namely, this would require the handling of triple-

junction intersections, modification to the way the integration space is determined, and a

robust enrichment strategy for multi-phase problems.
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[71] JJ. Moré. The Levenberg-Marquardt algorithm: implementation and theory. Numerical
Analysis, pages 105–116, 1978.
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[75] A. Myśliński. Phase field approach to topology optimization of contact problems. In
R. Haftka, editor, Proceedings of the 10th World Congress on Structural and Multidisciplinary
Optimization, number paper 233. ISSMO, 2013.
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Appendix A

Parametric Representation of Contact Constitutive Relations

This chapter provides examples of various interface constitutive relations, starting from strong

form equations and fully deriving coupled parametric weak form equations. Provided are the penalty

formulation, Lagrange multiplier method, and a stabilized Lagrange formulation.

A.1 Penalty Formulation

As a purely geometric consideration, we wish to penalize normal penetration between both

surfaces. The strong form of the penalty formulation is:

1

2
εg2
n = 0 (A.1)

where ε is an arbitrary penalty factor. The penalty factor ensures that the normal gap must be

zero to satisfy equilibrium. While this may be an appropriate response for compression, additional

conditions must be set to allow surface separation. Surface separation is discussed in Appendix B.

Applying integration over the surface and taking the total variation , the weak form residual

contribution from contact becomes:

rc =

ˆ
Γc

(δgn ε gn) dΓc (A.2)

where the integration domain Γc is the contact surface between both structures and δgn is the

variation of the normal gap. After mapping to the master surface parametric configuration, the

penalty formulation is as follows.

rc =

ˆ α̂2

α̂1

(δgn (α) ε gn (α))

∂Xm
i

∂α

dα (A.3)
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After applying Equation 6.42 the tangent stiffness becomes:

drc
dûpi

=

ˆ α̂2

α̂1

(
∂

∂ûpi
(δgn) ε gn + δgn ε

∂

∂ûpi
(gn)

)∂Xm
i

∂α

 dα+(
(δgn (α) ε gn (α))

∂Xm
i

∂α

)α̂2

∂α̂2

∂ûpi
−
(

(δgn (α) ε gn (α)) |∂X
m
i

∂α
|
)

α̂1

∂α̂1

∂ûpi
(A.4)

Using Equation 6.56, the derivative of residual contributions with respect to parametric

control parameters is derived as follows:

drc
dcpj

=

ˆ α̂2

α̂1

(
∂

∂cpj
(δgn) ε gn + δgn ε

∂

∂cpj
(gn)

)∂Xm
i

∂α

 dα+

ˆ α̂2

α̂1

(δgn (α) ε gn (α))
∂

∂cpj

(∂Xm
i

∂α

) dα+

(
(δgn (α) ε gn (α))

∂Xm
i

∂α

)α̂2

∂α̂2

∂cpj
−
(

(δgn (α) ε gn (α)) |∂X
m
i

∂α
|
)

α̂1

∂α̂1

∂cpj
(A.5)

Although the penalty method of enforcing surface non-penetration is geometrically intuitive

and relatively easy to apply, it has its own caveats. The satisfaction of non-penetration is directly

tied to the size of penalty parameter ε. For larger values of ε, penetration error decreases at the

cost of the conditioning number of the tangent stiffness matrix. Therefore care must be taken when

selecting an appropriate penalty parameter to minimize penetration error without producing an ill

conditioned system.

A.2 Lagrange Multiplier Formulation

Instead of relying on purely geometric considerations, a second approach is to begin with the

non-penetration inequality condition:

gnλ = 0, λ ≤ 0, gn ≥ 0 (A.6)

where λ is the normal pressure at the contact interface. If satisfied, this inequality constraint ensures

that the normal gap between surfaces must be greater than or equal to zero. In addition, the normal

pressure between surfaces must be compressive. The classical Lagrange Multiplier method can be
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derived for surface-to-surface contact by taking the variation of the equality condition integrated

over the area of contact: ˆ
Γc

(δgnλ+ gnδλ) dΓ = 0 (A.7)

where Γc is the area of contact. The normal pressure λ can be treated as an independent variable,

yielding a residual contribution to displacement equilibrium and a constraint equation.

rc =

ˆ
Γc

(δgnλ) dΓ (A.8)

rλ =

ˆ
Γc

(gnδλ) dΓ = 0 (A.9)

Applying a push-back operation and mapping the residual contributions to parametric space,

rc =

ˆ α̂2

α̂1

(
δg0
n (α) λ0 (α)

)∂Xm
i

∂α

dα (A.10)

rc =

ˆ α̂2

α̂1

(
g0
n (α) δλ0 (α)

)∂Xm
i

∂α

dα (A.11)

Here, we interpolate the Lagrange multiplier by some generic test function µi, such that λ0 (α) =

µi (α) λ̂0
i . Applying Equation 6.42, the tangent stiffness contributions can be expressed as

drc
dûpi

=

ˆ α̂2

α̂1

(
∂

∂ûpi

(
δg0
n (α)

)
λ0 (α) + δg0

n (α)
∂

∂ûpi

(
λ0 (α)

))∂Xm
i

∂α

 dα+( (
δg0
n (α) λ0 (α)

)∂Xm
i

∂α

)α̂2

∂α̂2

∂ûpi
−
( (
δg0
n (α) λ0 (α)

)
|∂X

m
i

∂α
|
)

α̂1

∂α̂1

∂ûpi
, (A.12)

drλ
dûpi

=

ˆ α̂2

α̂1

(
∂

∂ûpi

(
g0
n (α)

)
δλ0 (α) + δg0

n (α)
∂

∂ûpi

(
δλ0 (α)

))∂Xm
i

∂α

 dα+( (
g0
n (α) δλ0 (α)

)∂Xm
i

∂α

)α̂2

∂α̂2

∂ûpi
−
( (
g0
n (α) δλ0 (α)

)
|∂X

m
i

∂α
|
)

α̂1

∂α̂1

∂ûpi
. (A.13)

Applying Equation 6.56, sensitivities are defined as

drc
dcpj

=

ˆ α̂2

α̂1

(
∂

∂cpj

(
δg0
n (α)

)
λ0 (α) + δg0

n (α)
∂

∂cpj

(
λ0 (α)

))∂Xm
i

∂α

 dα+

ˆ α̂2

α̂1

(
δg0
n (α)λ0 (α)

) ∂

∂cpj

(∂Xm
i

∂α

) dα+

( (
δg0
n (α) λ0 (α)

)∂Xm
i

∂α

)α̂2

∂α̂2

∂cpj
−
( (
δg0
n (α) λ0 (α)

)
|∂X

m
i

∂α
|
)

α̂1

∂α̂1

∂cpj
, (A.14)
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drλ
dcpj

=

ˆ α̂2

α̂1

(
∂

∂cpj

(
g0
n (α)

)
δλ0 (α) + δg0

n (α)
∂

∂cpj

(
δλ0 (α)

))∂Xm
i

∂α

 dα+

ˆ α̂2

α̂1

(
δg0
n (α) δλ0 (α)

) ∂

∂cpj

(∂Xm
i

∂α

) dα+

( (
g0
n (α) δλ0 (α)

)∂Xm
i

∂α

)α̂2

∂α̂2

∂cpj
−
( (
g0
n (α) δλ0 (α)

)
|∂X

m
i

∂α
|
)

α̂1

∂α̂1

∂cpj
. (A.15)

A.3 Stabilized Lagrange Multiplier Formulation

The Lagrange multiplier method of satisfying non-penetration can suffer from spurious os-

cillations of the contact pressure, as there are no requirements that the Lagrange multipliers be

positive or negative to satisfy equilibrium. Retaining consistency and convergence of Lagrange

multipliers by adding stabilization terms to the classical Galerkin method was introduced by [8].

Here, the stabilized Lagrange method relates the Lagrange multiplier to the surface stresses of

either respective body, replacing Equation A.9 with:

rλ =

ˆ
Γc

δλ
(
λ− nmi

(
κmσmij + κsσsij

)
nmj + εgn

)
dΓ = 0 (A.16)

κm + κs = 1 (A.17)

where δλ is the Lagrange multiplier trial function, κ is a stress weighting parameter for material

p, and ε is a penalty factor. This penalty factor discourages penetration during the early stages of

convergence, but becomes insignificant as stress equilibrium is achieved at the converged solution.

The most intuitive choice for the stress weighting parameters is κp = 0.5, however within the

framework of XFEM, stress predictions can be poor in small fractions of elements. Furthermore, in

the context of contact mechanics this choice can cause small fractions of elements to invert under

moderate surface pressure. To mitigate this issue, another approach proposed by [5] is to provide

a weighting scheme proportional to element fraction volume and inversely proportional to material

stiffness:

κm =
Ωm

Em

Ωm

Em + Ωs

Es

, κs =
Ωs

Es

Ωm

Em + Ωs

Es

(A.18)
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where Ωp and Ep are the element fraction volume and Youngs modulus for material p. This

weighting scheme places more emphasis on the predicted surface stress of the greater element

fraction.

Here we introduce a generic interpolation space for the Lagrange multiplier µi, such that

λ0 (α) = µi (α) λ̂0
i and δλ = µi. Stresses are derived from objective (frame indifferent) constitu-

tive relations, pushed forward to the deformed configuration for averaging, and mapped to the

undeformed master surface for integration:

rλ =

ˆ
Γ0
m

µi

(
λ0 − κmndi

m
Smij n

d
j
m − κsndi

m
F sijS

s
jkF

s
lkn

d
l
m
Js−1Jm + εgn

)
dΓ = 0 (A.19)

where Γ0
m is the undeformed master surface, Fij is the deformation gradient, J = det (Fij) is the

volumetric jacobian, J = da
dA = J‖F−T ·n0‖ is the surface jacobian, Sij is the second Piola-Kirchoff

stress tensor, and λ0 denotes the Lagrange multiplier in the master reference configuration. The

Lagrange multiplier is condensed out at the elemental level, and the state residual contribution is

integrated in the undeformed master configuration.

rc =

ˆ
Γ0
m

(
δg0
n λ

0
)

dΓ (A.20)

Mapping the constraint equation and residual contributions to parametric space:

rλ =

ˆ α̂2

α̂1

µp

(
λ0 (α)− κmndi

m
Smij n

d
j
m

− κsndi
m
F sijS

s
jkF

s
lkn

d
l
m
Js−1Jm − εgn

)∂Xm
i

∂α

dα = 0 (A.21)

rc =

ˆ α̂2

α̂1

(δgn (α) λ (α, α̂1, α̂2))

∂Xm
i

∂α

dα (A.22)

The Lagrange multiplier degrees of freedom are condensed at the local level as follows:

λ̂0
q =

[ˆ α̂2

α̂1

µpµq

∂Xm
i

∂α

dα

]−1 ˆ α̂2

α̂1

µp

(
κmndi

m
Smij n

d
j
m

+

κsndi
m
F sijS

s
jkF

s
lkn

d
l
m
Js−1Jm + εgn

)∂Xm
i

∂α

dα. (A.23)
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Note that due to condensation, the surface pressure variables λ̂0
q are dependent on the limits of

integration. To express this dependency, we begin by taking the derivative of Equation A.23 with

respect to α̂i. For brevity, the integrand in Equation A.23 is denoted by fλ. Taking the partial

derivative with respect to the limit of integration and discrete solution:

∂λ̂0
k

∂α̂1
=

[ˆ α̂2

α̂1

µiµk

∂Xm
l

∂α

dα

]−1 [
µi

(
µj λ̂

0
j − fλ

)
α̂1

]
, (A.24)

∂λ̂0
k

∂α̂2
= −

[ˆ α̂2

α̂1

µiµk

∂Xm
l

∂α

dα

]−1 [
µi

(
µj λ̂

0
j − fλ

)
α̂2

]
, (A.25)

∂λ̂0
k

∂ûpq
=

[ˆ α̂2

α̂1

µiµk

∂Xm
l

∂α

dα.

]−1 [ˆ α̂2

α̂1

µi

(
∂fλ
∂ûpq

)
dα

]
(A.26)

We have derived the necessary relations to evaluate the consistent tangent of our residual contri-

bution. Recalling our residual contribution:

rc =

ˆ α̂2

α̂1

(
δgn (α) λ0 (α, α̂1, α̂2)

)∂Xm
i

∂α

dα (A.27)

we will abbreviate the integrand as fu to arrive at a succinct consistent tangent stiffness.

drc
dûi

=

ˆ α̂2

α̂1

∂fu
∂ûi

dα +

ˆ α̂2

α̂1

(
δgn

∂λ0

∂â2

)∂Xm
i

∂α

dα
∂α̂2

∂ûi
+
(
fu


α̂2

)∂α̂2

∂ûi

−
ˆ α̂2

α̂1

(
δg0
n

∂λ

∂â1

)∂Xm
i

∂α

dα
∂α̂1

∂ûi
−
(
fu


α̂1

)∂α̂1

∂ûi
(A.28)

Taking the derivative of the Lagrange multiplier with respect to parametric control variables:

∂λ̂0
k

∂cpq
=

[ˆ α̂2

α̂1

µiµk

∂Xm
l

∂α

dα

]−1
[ˆ α̂2

α̂1

(
∂fλ
∂cpj

)
dα

]
−

[ˆ α̂2

α̂1

µiµk

∂Xm
l

∂α

dα

]−2
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α̂1

(fλ) dα

ˆ α̂2

α̂1

µi

(
∂

∂cpj

∂Xm
l

∂α


)

dα

]
(A.29)

the derivative of residual contributions from contact with respect to parametric control parameters

is derived.

drc
dcpj

=

ˆ α̂2

α̂1

∂fu
∂cpj

dα +

ˆ α̂2

α̂1

(
δgn

∂λ0

∂â2

)∂Xm
i

∂α

dα
∂α̂2

∂cpj
+
(
fu


α̂2

)∂α̂2

∂cpj

−
ˆ α̂2

α̂1

(
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n
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∂â1
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i
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dα
∂α̂1

∂cpj
−
(
fu


α̂1

)∂α̂1

∂cpj
(A.30)
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Appendix B

Considerations for Mechanical Model Accuracy and Optimization Reliability

The methodology, model verification, and numerical examples provided in this thesis demon-

strate that topology optimization shows great promise towards the development of structural de-

signs reliant on contact phenomena. However, throughout the evolution of model geometry, design

features and intermediate configurations can arise which pose difficulties to the evaluation of the

physical response prediction, and subsequently the determination of design sensitivities. Within

the context of XFEM-LSM topology optimization of contact related problems, this chapter pro-

vides insight to how various contact assumptions, numerical implementation methods, and XFEM

stabilization techniques affect the mechanical model accuracy and optimization reliability of these

types of design problems. The studies presented here are specific to large sliding contact behavior

in the finite strain regime.

B.1 Contact Behavioral Assumptions

For large deformation contact problems, it can be convenient to integrate contact contri-

butions to equilibrium in an unchanging reference configuration. Non-penetration constitutive

relations such as the Stabilized Lagrange formulation or Nitsche’s method express contact equilib-

rium in terms of surface pressure equilibrium. For this work, contact contributions to equilibrium

are integrated along the master surface undeformed configuration. This requires mapping surface

information from the undeformed slave surface to the undeformed master surface for the evaluation

of an averaged interface surface traction. Depending on the assumptions made regarding coinci-
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Figure B.1: Continuum bodies ‘A’ and ‘B’, which are in contact in the current configuration.

dent surface orientation, the resulting constitutive behavior at the interface may take on slightly

different forms.

Consider two elastic continuum bodies with smooth and continuous surface geometry. The

continuum bodies are separate in the undeformed configuration, but are in frictionless contact

between surface subsets ΓA and ΓB in the current configuration, as illustrated in Figure B.1. We

wish to evaluate an averaged measure of surface pressure on the undeformed surface ΓA0 :

p̄A0 = κApA0 + κBpB→A0 , (B.1)

where p̄A0 is the averaged measure of surface pressure, κA and κB are arbitrary weighting terms

such that κA+κB = 1, pA0 is the surface pressure on the undeformed surface of body ‘A’, and pB→A0

is the surface pressure on the undeformed surface of body ‘B’, mapped to the undeformed surface

of body ‘A’. The surface pressure pA0 is determined as:

pA0 = nA0
T · SA · nA0 (B.2)

What follows are two different variations for determining pB→A0 .
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B.1.1 Orientation Assumption: nA = −nB

In a state of perfect frictionless contact within the surface subsets ΓA and ΓB, one may

assume that the deformed surface normal orientation of each body are equal and opposite:

nA = −nB . (B.3)

With equal and opposite surface orientation one may directly map surface quantities from one

bodies reference configuration to the other, within the area in contact. To define surface pressure

on the undeformed surface of body ‘B’, mapped to the undeformed surface body ‘A’, pressure is

first directly evaluated on the undeformed surface of body ‘B:’

pB0 = nB
T
0 · SB · nB0 . (B.4)

Using the surface Jacobian defined in Equation 3.24, surface pressure is scaled to the current

configuration:

pB = nB
T
0 · SB · nB0 J B

−1
= nB

T · σB · nB . (B.5)

Note that due to the equal and opposite orientation of each surface in contact:

pB→A = nA
T · σB · nA = nB

T · σB · nB . (B.6)

Equation B.6 implies that given the coincident position of either respective surface in the deformed

configuration, pB→A = pB. Using the surface Jacobian of body ‘A,’ the surface pressure from body

‘B’ is pulled back to the reference configuration of body ‘A.’

pB→A0 = nB
T
0 · SB · nB0 J B

−1 J A (B.7)

This mapping process is illustrated in Figure B.2. Assuming equal and opposite surface

orientation leads to a compact and computationally inexpensive mapped pressure term. Surface

normals are evaluated in the undeformed configuration only, which are independent of the displace-

ment field. Within the context of weakly enforced immersed boundary conditions, the performance

of this mapped pressure term will be compared to one which does not assume both surfaces are

equal and opposite in orientation.
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B.1.2 Orientation Assumption: nA 6= −nB

Although a perfect state of frictionless contact between two smooth elastic continuum bodies

indeed yields equal and opposite surface normals in the deformed configuration, numerical approx-

imation of the contact problem can result in non-coincident surface position and orientation. This

is especially true for weakly enforced contact equilibrium. This pressure mapping method assumes

that surface location is coincident, without making any assumptions of equal and opposite surface

orientation. Only the orientation of the master surface (body ‘A’) is used to evaluate pressure. To

define surface pressure from body ‘B’ mapped to the undeformed surface of body ‘A,’ the 2nd Piola

Kirchhoff stress from body ‘B’ is first pushed forward to the current configuration:

σB = JB
−1

FB · SB · FBT . (B.8)

The deformed normal of body ‘A’ is then used to determine the resulting pressure on the surface

of body ‘A:’

pB→A = JB
−1

nA
T · FB · SB · FBT · nA . (B.9)

Lastly, the pressure term is pulled back to the reference configuration using the surface Jacobian:

pB→A0 = JB
−1

nA
T · FB · SB · FBT · nA J A (B.10)

This mapping process without any orientation assumptions is illustrated in Figure B.3. This

Figure B.2: Mapping surface pressure, orientation assumption: nA = −nB.
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Figure B.3: Mapping surface pressure, orientation assumption: nA 6= −nB.

form of mapped surface pressure does not rely on any orientation assumption, but is computa-

tionally more expensive. The deformed surface normals of surface ‘A’ are dependent on the dis-

placement field, complicating the determination of the tangent stiffness. What follows is a simple

example illustrating the difference in predicted model response from either method of mapping

surface pressure.

B.1.3 Orientation Assumption: Comparison

For comparison, we revisit the weak form of governing equations:

∑
p=A,B

ˆ
Ωp0

C(vp) : (FpSp) dΩ −
∑
p=A,B

ˆ
Ωp0

vp · fp dΩ

−
∑
p=A,B

ˆ
Γ
p0
N

vp · Fp dΓ−
ˆ

ΓA0

δgA0 λ0 dΓ = 0 , (B.11)

where each method of mapping surface pressure from body ‘B’ to body ‘A’ are used in the stabilized

constraint equation ˆ
ΓA0

µ
(
λ0 − κApA0 − κBpB→A0 − γ gA0

)
dΓ = 0. (B.12)

The same benchmark problem presented in Section 10.5.2 is used with a change to the applied loads.

Along the top edge, we will prescribe an applied displacement of UAx = −0.5m and UAy = −0.5m.

To compare pressure mapping terms with a coarse model discretization, the mesh is discretized

with 15x15 elements. The model is incrementally loaded to the prescribed displacement value, and

Figure B.4 illustrates the predicted mechanical response near the area of contact.
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Figure B.4: Predicted mechanical response for (a) nA = −nB, and (b) nA 6= −nB

While the orientation assumption of nA = −nB is computationally less expensive, and in-

tuitive to perfectly frictionless contact between smooth elastic bodies, under coarse discretization

it over-predicts surface pressure. This over-prediction of contact pressure manifests itself by the

small gap between structures in Figure B.4(a). While computationally more expensive, not making

any assumptions of orientation yields a more physically accurate response as seen in Figure B.4(b).

Although this error in physical response prediction decreases with mesh refinement for both orienta-

tion assumptions, topology optimization can result in design features that approach the side-length

of an element. In these types of applications mapping option (b) may be preferred, as it provides

a better physical response prediction in sub-optimal discretizations.

B.2 XFEM Stabilization Techniques

For topology and shape optimization problems, the XFEM has many advantages compared

to more traditional mechanical models which rely on conformal discretization schemes. The XFEM

unburdens model geometry and discontinuous displacement fields from being mesh-conforming,

provides well-defined material interfaces, eliminates expensive remeshing during design changes, and

provides unchanging state and optimization variables throughout the evolution of model geometry.
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However, the XFEM can result in an ill-conditioned system of equations when the ratio of volumes

on either side of the interface in an element is small. During topological changes on a fixed mesh, this

predicament is often unavoidable. For contact related problems, this ill conditioning often results in

artificially high stress predictions in thinly intersected elements. This can lead to solution divergence

for problems in which the contact constitutive equations rely on stress to satisfy non-penetration

conditions.

Chapter 7 presented two stabilization techniques for mitigating ill-conditioning: a geometric

preconditioner method and the ghost penalization method. The geometric preconditioner restores

the relative influence of the degrees of freedom, and is minimally invasive to the physical response

prediction. The ghost penalization method stabilizes the system of equations by penalizing the flux

of a state variable across element borders in the vicinity of the material interface. Ghost penalization

can be physics related, and requires additional residual contributions to express model equilibrium.

Section B.2.1 provides a comparative study of how each stabilization technique performs, compared

to a body-fitted Finite Element model solution produced by Abaqusr.

Additionally, Chapter 7 presented two stabilization techniques for encouraging stable conver-

gence of the response prediction through physical behavior such as delamination, neutral instability,

and snap-through. Dynamic relaxation augments the global tangent stiffness diagonal, based on

the iterative convergence behavior, whereas the solution correction scaling method scales back the

iterative solution adjustment to a specified maximum value. Section B.2.2 provides a compar-

ative study of each Newton-Raphson stabilization technique, for an example problem exhibiting

snap-through behavior.

B.2.1 Preconditioner vs. Ghost Penalization

Consider the following contact problem illustrated in Figure B.5. The square domain of

side length L = 1.0 m consists of two continuum bodies, ΩA and ΩB, separated by the material

interface Γc. The shape of the interface is defined by two super-imposed circles of radius r =
√

2/2

m. Both bodies are described as neo-Hookean materials of the same properties, as depicted in
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Figure B.5: Stabilization study: model setup

Figure B.5. Frictionless contact is prescribed at the material interface via the stabilized Lagrange

formulation defined in Section 10.3. The bottom edge of the design domain is fixed, while an

incrementally applied displacement of UAx = −0.8 m is prescribed along the top edge of the design

domain. The domain was discretized with 50×50 quad-4 elements, and incrementally loaded quasi-

statically in 50 increments. For both ghost penalization models using locally scaled and globally

constant penalties, the global penalty parameter is set to γG = 0.01h. For the locally scaled ghost

penalization model, this means that for very small material fractions, the local penalty parameter

scales as 0.01h ≤ γL ≤ 0.1h.

This particular model setup was chosen to highlight stabilization performance for a contact

problem experiencing large deformation. To verify the response prediction afforded by the XFEM,

the same problem was solved using a body-fitted mesh in Abaqusr. The design domain was dis-

cretized with 50×50 quad-4 elements, and incrementally loaded quasi-statically in 50 increments.

Frictionless contact at the material interface was enforced with a surface-to-surface augmented

Lagrange method. The total contact pressure is recorded for each load increment until a loss of

convergence is experienced or the simulation is completed. The contact pressure history is plot-

ted for the Abaqusr body fitted solution, XFEM geometric preconditioner solution, and XFEM
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Figure B.6: Comparison of contact pressure history.

ghost penalization solutions in Figure B.6. For ghost penalization, both locally scaled and globally

constant penalties are compared as ‘Ghost L.’ and ‘Ghost G.’ in the legend of Figure B.6, respec-

tively. For each XFEM model, loss of convergence was experienced at time step 23, 29, and 32

for the global preconditioner, global ghost preconditioner, and local ghost preconditioner models,

respectively. Surprisingly, locally scaling the penalty factor up for small volume fractions did not

perform as well as maintaining a globally constant value. To gain greater insight to the physical

behavior at the interface, the solution predicted by the geometric preconditioner model and that

predicted by the globally scaled ghost penalization model are compared at load increment 23 in

Figures B.7-B.8. While both the XFEM geometric preconditioner model and the XFEM globally

scaled ghost penalty model result in stress approximation errors near the interface, the geometric

preconditioner model exhibits an interfacial gap. This gap is a result of over-predicting surface

pressure at localized regions along the interface. This suggests that ghost penalization may per-

form better than geometric preconditioning in reducing erroneous high stress approximations at

the interface.
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Abandoning geometric preconditioning and locally scaled ghost penalization due to under-

performance, the penalty factor of the globally constant ghost penalization model is increased to

γG = 0.5h. The higher penalty factor affords the full analysis to be completed. The current

configuration of the final load step for both Abaqusr and ghost penalization are illustrated in

Figures B.9-B.10. While there is general agreement in the von Mises stress prediction, a high

penalty factor for ghost penalization can produce a smearing effect of the stress prediction near

the interface. For ghost penalization there is a tradeoff between stability and predicted solution

accuracy. The contact pressure history for the Abaqusr model is compared to that produced by the

XFEM globally scaled ghost penalty for both penalty factors in Figure B.11. The notable decrease

in contact pressure predicted by XFEM could be attributed to the smearing effect caused by high

ghost penalization.

B.2.2 Dynamic Relaxation vs. Solution Correction Scaling

Consider the following contact problem illustrated in Figure B.12. The rectangular domain

consists of three materials, ΩA, ΩB, and ΩC . Materials ΩA, and ΩB are separated by the frictionless

contact interface interface Γc. Materials ΩA, and ΩC are fully bonded at the interface between

them. The shape of the contact interface, Γc, is defined by a sinusoidal wave offset by L2/2. The

sinusoidal wave follows two full periods in the length of L1, and has an amplitude of a = 1/30

m. All bodies are described as neo-Hookean materials, whose properties are listed in Table B.1.

Figure B.7: Physical response, load increment
23, XFEM preconditioner.

Figure B.8: Physical response, load increment
23, XFEM global scaled ghost penalization.
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Figure B.9: Physical response, load increment
50, Abaqusr.

Figure B.10: Physical response, load increment
50, XFEM global scaled ghost penalization.

Figure B.11: Comparison of contact pressure history, global scaled penalty.

Frictionless contact is prescribed at the material interface via the stabilized Lagrange formulation

defined in Section 10.3. The bottom edge of the design domain is fixed, while an incrementally

applied displacement of UCx = 0.5 m is prescribed along the right hand edge of material ΩC . The

domain was discretized with 30×15 quad-4 elements, and incrementally loaded quasi-statically in

20 increments. For either model using dynamic relaxation or solution correction scaling, Ghost

penalization is used with a penalty value of γG = 0.01h.

For the dynamic relaxation model, an initial damping parameter of β̃int = 0.1 is applied, the



www.manaraa.com

182

Figure B.12: Stabilization example initial con-
figuration.

Description Parameter

domain length L1 = 1.0 m
host depth L2 = 0.5 m
peak width location L3 = 0.0667 m
base width location L4 = 0.0333 m
Young’s modulus EA = 10 MPa
Young’s modulus EB = 10 MPa
Young’s modulus EC = 0.4 MPa
Poisson’s ratio νA = 0.3
Poisson’s ratio νB = 0.3
Poisson’s ratio νC = 0.0
applied load, at t = 1 UCx = 0.5 m

Table B.1: Stabilization example model
parameters.

maximum allowable Newton iteration is set to 35, and dynamic relaxation iterations are capped at 1.

These parameters were established through trial and error, until the full mechanical response could

be achieved. For the scaled solution correction model, the maximum allowable solution correction

size is set to δmax = h/2, where h is the element side length, and the maximum allowable Newton

iteration is set to 50. To illustrate the snap-through behavior of this problem, Figure B.13 shows

the physical response of the system prior and after exceeding the critical applied displacement.

During this process, material ΩA translates a significant distance in the positive x direction in

Figure B.13: Physical response at the incremental steps before and after snap-through.

a single load increment. Material ΩC transitions from large elastic stretch to compression. For
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comparison, Figure B.14 depicts the experienced force along the right hand edge of material ΩC

throughout the incremental loading process for dynamic relaxation, scaled solution correction, and

unaltered Newton-Raphson models.

Figure B.14: Force displacement curve for each model.

The unaltered Newton-Raphson model lost convergence after the 11th load increment, and

dynamic relaxation predicts an experienced force profile that greatly differs from that produced by

the scaled solution correction method. To explore the discrepancy between methods, the relative

residual error is plotted for each Newton iteration throughout the duration of load increments;

see Figures B.15, B.16, and B.17. The converged solution of each load increment is labeled by

si, where i corresponds to the particular load increment. The unaltered Newton-Raphson model

exhibits quadratic convergence from steps 2 through 11, but diverges at load increment 12 due

to the large relative motion caused by the snap-through behavior. The dynamic relaxation model

requires on average twice the number of Newton iterations to resolve each load increment, and fails

to achieve convergence at increments 11 through 14. This lack of convergence explains the over-

predicted reaction force in Figure B.14. The scaled solution correction model converged on all load

increments, and out-performed dynamic relaxation for the required number of Newton iterations.
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Figure B.15: Convergence behavior for unaltered Newton-Raphson model.
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Figure B.16: Convergence behavior for dynamic relaxation model.

While dynamic relaxation has shown very useful to resolving equilibrium around sharp consti-

tutive discontinuities such as material cohesion (see Chapter 9), it does not perform reliably during

snap-through behavior in large sliding contact problems. Dynamic relaxation can mitigate total
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Figure B.17: Convergence behavior for the scaled solution correction model.

solution divergence during snap-through behavior, however it may or may not result in an accurate

response prediction. Determining the optimal initial damping parameter and stop criteria is prob-

lem dependent, and a daunting endeavor for optimization problems which go through many design

changes. In the authors’ experience, the scaled solution increment method outperforms dynamic

relaxation in many (but not all) large sliding contact problems. The scaled solution increment

method is well suited for this subset of problems dealing with mild snap-through behavior, however

arc-length methods need to be explored for problems exhibiting greater response nonlinearities.
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